
µSystems Research Group

School of Engineering

Formal Methods for Spacecraft
Control Programs

Georgy Lukyanov

PhD Thesis

December 2022

Abstract

Software programs that govern various systems often contain subtle errors that slip through
even the most rigorous testing and validation routines. One integer overflow error can cause
a crash of a spacecraft or a devastating loss of funds in a financial application. Formal meth-
ods bring higher levels of correctness guarantees than traditional testing. The aerospace
domain requires adherence to high quality standards for both hardware and software system
components. Mission requirements motivate development of tailored hardware and software
that needs to be rigorously tested to comply with industry quality standards. In this the-
sis, we apply formal methods and programming languages techniques to design a generic
semantics-based verification framework for instruction-set architecture level programs. We
instantiate the framework for a custom instruction-set architecture designed for space satel-
lite subsystems and create a formal and executable semantics for the ISA. On top of the
semantics, we build a tool set that facilitates simulation, testing, static analysis and formal
verification of spacecraft control programs. Our tool aims to shift the main verification effort
to an earlier stage in the project timeline, and reduce the costly and time-consuming set-
backs caused by bugs discovered on the later stages of system development. We argue that
our approach is ISA-generic, and can be applied to other instruction sets and bytecode-style
languages.

Acknowledgments

I would like to express gratitude to my first PhD supervisor Andrey Mokhov. Andrey’s
has taught me what does it mean to be a researcher. His curiosity, energy and passion,
his attention to detail and, most importantly, his kindness and empathy will always be a
standard I will strive to uphold.

I am grateful to Jakob Lechner, who has been my host at TU Wien and Ruag Space
Austria. Jakob has offered an industry practitioner’s perspective on my research. When I
write about a “space engineer” in the thesis, Jakob is the person I mean. Without Jakob’s
input and help, this thesis would end up to be a bunch of castles in the sky.

I would also like to thank Alex Yakovlev, who has always been an inspiring leader and
provided me with valuable guidance and support in the final stages of my studies, when I
needed that most.

Throughout my studies, I interacted with many amazing people, both at Newcastle and
while on visits, to whom I am grateful for the opportunity to learn from them. Danil
Sokolov, who sat right across from my desk, was always ready to discuss research ideas, or
to give practical advice on various aspects of life. Steven Keuchel and Dominique Devriese
have taught how to prove soundness of a program logic while also staying sound yourself.
Jakub Hulas, Sergey Mileiko and Joe Scott were the best housemates ever: always ready to
cheer me up with a joke or cook something together. Ghaith Tarawneh helped me to stay
fit by dragging me to the university gym.

Finally, I want to thank my wife, Veronika Lukyanova. She has always believed in me.
The last year of my postgraduate studies was difficult, and if it wasn’t for Veronika, I don’t
think I would have finished my thesis.

For Larisa Ternovskaya

Contents

List of Figures vii

List of Tables ix

Glossary x

1 Introduction 1
1.1 Microprocessor formal specification and verification 2
1.2 Formal methods in space industry . 3
1.3 Motivating case-study: the REDFIN instruction-set architecture 4

1.3.1 REDFIN Instruction Set and Microarchitecture 5
1.3.2 Intended use-cases for REDFIN . 6
1.3.3 Requirements for Formal Verification 7

1.4 Methodology and contributions . 7
1.4.1 A generic semantics-based verification framework 7
1.4.2 Methodology of REDFIN program verification 8
1.4.3 Contributions . 9
1.4.4 Further applicability . 10
1.4.5 Publications . 10

1.5 Structure of the thesis . 11

2 Background 13
2.1 Software verification . 13

2.1.1 Formal verification of ISA programs: a related work overview 17

i

2.1.1.1 ISA specification languages and frameworks 17
2.1.1.1.1 Standalone DSLs for ISA specification 17
2.1.1.1.2 ISA specification EDSLs 20

2.1.1.2 Specific ISA models . 21
2.1.1.3 Conclusion . 22

2.1.2 Caveats of ISA-level formal specification 23
2.1.2.1 Numbers are not what they seem 23

2.1.2.1.1 Postcondition test 26
2.1.2.1.2 Precondition test 26
2.1.2.1.3 Using a larger signed integer type 27

2.1.3 Symbolic execution . 28
2.1.3.1 An interlude on programming language semantics 29

2.1.4 Symbolic execution of machine code 30
2.1.4.1 Symbolic representation of REDFIN ISA data 31
2.1.4.2 Symbolic execution strategies 34

2.1.4.2.1 Pruning unreachable branches on-the-fly 35
2.1.4.2.2 State merging . 36
2.1.4.2.3 Loop summaries 36
2.1.4.2.4 Incremental solving 37

2.2 Functional Programming . 37
2.2.1 Pure functions, totality and side effects 38
2.2.2 Higher-order functions and recursion 39

2.2.2.1 map — structure-preserving transformations of lists 40
2.2.2.2 foldr — computing summaries of lists 40

2.2.3 Algebraic data types . 42
2.2.3.1 Why “algebraic” . 42
2.2.3.2 Sum types . 42
2.2.3.3 Product types . 44
2.2.3.4 Recursive types . 44
2.2.3.5 newtype — introducing a type isomorphic to an existing one 45

2.2.4 Type classes . 46

ii

2.2.4.1 The Eq class — equality . 46
2.2.4.2 The Ord class — total order 47
2.2.4.3 Defining custom type classes 47

2.2.5 Programs with side-effects . 48
2.2.5.1 Revisiting IO . 48
2.2.5.2 The Functor Class — independent effects 49
2.2.5.3 The Applicative class — statically defined effects 52
2.2.5.4 Selective class — statically defined, dynamically dispatched

effects . 53
2.2.5.4.1 Selective combinators 55
2.2.5.4.2 Examples of selective functors 57

2.2.5.5 The Monad class — fully dynamic effects 59

3 Instruction-set architecture semantics 60
3.1 Instruction syntax . 61

3.1.1 Concrete syntax: instruction codes 61
3.1.2 Abstract syntax . 62

3.2 ISA state . 63
3.2.1 Data types . 63

3.3 Instruction semantics . 65
3.3.1 Coarse-grained operation semantics 65
3.3.2 Fine-grained dataflow-aware semantics 67

3.3.2.1 Linear dataflow . 68
3.3.2.2 Static Tree Dataflow . 70
3.3.2.3 Selective Tree Dataflow . 72
3.3.2.4 Dynamic Tree Dataflow . 73

3.4 Conclusion . 74

4 REDFIN semantics and program verification with coarse-grained monadic
state transformers 75
4.1 The REDFIN ISA state . 77
4.2 Instruction and Program Semantics . 79

iii

4.2.1 Halting the Processor . 81
4.2.2 Arithmetics . 81
4.2.3 Conditional Branching . 82

4.3 Simulation and formal verification . 82
4.3.1 Energy estimation control task . 83

4.3.1.1 Program simulation . 84
4.3.1.2 Formal verification . 84
4.3.1.3 Checking program equivalence 86
4.3.1.4 Worst-Case Execution Time analysis 87

4.3.2 Array sum . 88
4.3.2.1 Integer overflow . 90
4.3.2.2 Program equivalence . 91

4.3.3 Discussion . 92

5 REDFIN semantics and program verification with fine-grained state trans-
formers 94
5.1 Fine-grained state transformers . 94

5.1.1 The FS type . 95
5.2 REDFIN ISA semantics as a fine-grained state transformer 97

5.2.1 Data types . 97
5.2.2 Value type classes . 98
5.2.3 Symbolic values . 99
5.2.4 Memory representation . 101
5.2.5 Instruction and program semantics 102

5.3 Symbolic execution . 103
5.3.1 Memory representation . 103

5.3.1.1 Memory configuration of REDFIN 103
5.3.1.2 Concrete and symbolic memory addresses 104

5.3.2 Symbolic execution context . 106
5.3.2.1 Example: initial state of an array summation program . . . 107

5.3.3 Execution traces . 110

iv

5.3.4 Specification syntax . 112
5.3.4.1 Invariant syntax . 112

5.3.5 Invariant semantics . 113
5.3.5.1 Interpreting invariants over symbolic execution traces . . . 113
5.3.5.2 Interfacing with an off-the-shelf SMT solver 115

5.3.6 Case-study: stepper-motor control program 115
5.3.6.1 Motor Control Algorithm 115
5.3.6.2 Program termination and arithmetic safety 118
5.3.6.3 Loop Invariant Verification 119

6 Tool support 121
6.1 Redfin Assembly . 121
6.2 Compiler for a language of expressions . 124

6.2.1 Abstract Syntax of Expressions . 125
6.2.2 Reusing Haskell’s syntax as concrete syntax 126
6.2.3 Compiling Expressions to Assembly 127

6.2.3.1 Stack emulation . 127
6.3 Integrated Development Environment . 131

6.3.1 Motivation . 131
6.3.2 IDE features . 132
6.3.3 Demonstration: array sum program 132
6.3.4 IDE Implementation Overview . 137

7 Conclusions and future work 139
7.1 Summary of contributions . 139

7.1.1 Contributions . 139
7.2 Future work: application to other architectures 140
7.3 Future work: Redfin modelling scope . 141

7.3.1 System bus interaction . 141
7.3.2 Hardware synthesis . 142

7.4 Future work: formal verification techniques 142
7.4.1 Automated proof of functional correctness for looping programs . . . 142

v

7.4.2 Reducing the trusted base: verified symbolic execution 143

Bibliography 145

vi

List of Figures

1.1 REDFIN’s register-memory architecture . 6
1.2 Chapter flowchart . 12

2.1 Completeness and costs of software verification methods 14
2.2 Sail language overview [11] . 19
2.3 Pareto principle for ISA model completeness 22
2.4 Addition of two variables interpreted as concrete values and symbolic ranges

approach. 28
2.5 REDFIN’s register-memory architecture, as per REDFIN V2 data sheet. . . 32
2.6 Pruning of an unreachable branch . 35

3.1 Instruction syntax . 63
3.2 REDFIN ISA keys . 64

4.1 Overview of the presented verification approach. 76
4.2 Basic types for modelling REDFIN. 78
4.3 Implementation of the REDFIN state transformer 80
4.4 Array summation program . 88
4.5 Array sum theorem schema . 90

5.1 The type FS of a fine-grained state transformer 95
5.2 REDFIN ISA keys . 98
5.3 Type classes for Booleans, equality and order 99
5.4 Concrete values . 99
5.5 Data type of symbolic values . 100

vii

5.6 REDFINv2 IP-Core block diagram (excerpt from REDFIN v2 data sheet) . 104
5.7 The data type representing the ISA states 107
5.8 A set-theoretic specification of an array of length n 108
5.9 The initial context for the array summation program and the program’s

source code . 109
5.10 Example symbolic execution trace for program from figure 5.9 111
5.11 Syntax of invariants and underlying atomic propositions 112
5.12 Symbolic execution trace of a code fragment with conditional branching. . . 117
5.13 Velocity (v) and distance travelled (s) plotted against time (t) 118

6.1 Assembly embedded domain-specific language (EDSL) types 122
6.2 Example mnemonics . 123
6.3 Type-safe bitvector combinators . 124
6.4 Recap of symbolic types used as mnemonics’ arguments 124
6.5 Abstract syntax of the Expression language 126
6.6 Shallow embedding of Expression into Haskell 126
6.7 Embedded compiler infrastructure . 127
6.8 Embedded compiler infrastructure . 128
6.9 An Expression and the corresponding assembly 129
6.10 Compiling Expressions to assembly . 130
6.11 Compiling Expressions to assembly . 130
6.12 The array summation program and its total safety condition 133
6.13 Total safety for sum of three numbers . 134
6.14 Removing the constraints on the third number causes the addition in state

19 to overflow . 136
6.15 IDE and backend modules . 137

7.1 REDFINv2 IP-Core block diagram. See section 5.3.1.1 for description.) . . 141

viii

List of Tables

2.1 Integers represented as two’s complement bit vectors of length 3 24
2.2 REDFIN’s data locations . 33
2.3 Comparison of apply, select and bind operators in terms of their expressive

power. Note that each operator has one unique ability that the two others
lack. 56

3.1 REDFIN ISA machine code formats . 61

4.1 Verification time for array summation programs 91

5.1 Description of fine-grained stateful computation components 96
5.2 Programming interface of symbolic values 100

ix

Glossary

ad-hoc polymorphism a mechanism of overloading a function name with different context-
dependent meanings. 46

ADL Architectural Description Language. 17, 18

ADT algebraic data type. 42, 75

ALU arithmetic logic unit. 26, 31, 103

anonymous function A function that can be defined “on-the-fly”, at use site, without
naming it. 40

ASIC application-specific integrated circuit. 1

ASL Arm Architecture Specification Language. 18

basic block a node in a control-flow graph. Intuitively, a basic block is a sequence of
program statements with no jumps in the middle. 102

CFG control-flow graph. 102

concolic execution (from concrete and symbolic) an approach to program verification
that performs concrete and symbolic execution simultaneously, with the former guiding
the latter. 32

data constructor A data constructor, or value constructor, is a function with zero or
more arguments that, when fully applied, return a value of the algebraic data type it
belongs to. 42

x

do-notation syntactic sugar for monadic computations. 75

DSL domain-specific language. 126

ECSS European Cooperation for Space Standardization. 3

EDSL embedded domain-specific language. viii, 9, 17, 20, 60, 76, 78, 82, 121, 122, 124–127,
139

ESA European Space Agency. 3, 8, 9

FPGA field-programmable gate array. 1, 4

GHC Glasgow Haskell Compiler. 46–48

HDL Hardware Description Language. 2, 17

higher-order function A function that receives another function as an argument, or re-
turns another function as a result. 39

IDE Integrated Development Environment. 8, 9, 121, 140

ISA instruction-set architecture. 2, 3, 26, 31, 34, 127

LIFO last in, first out. 127

list comprehension a notation for manipulating lists. Widely used in Python, Haskell
and other programming languages. 45

loop unrolling A program transformation that translates a program with an arithmetic
loop into a one without the loop by concatenating the loop body as much times as
there are loop iterations. 88

metalanguage A language used to describe another language. For example, if one pro-
gramming language is used to implement an interpreter for another programming
language, the former is called “metalanguage”, and the latter “object language”. 27

xi

parametric polymorphism A form of generic programming that allows writing functions
operating on values of any type. 40

partial correctness A program p is called partially correct with respect to a specification
s if it is functionally correct (with respect to s). As opposed to total correctness, the
program may diverge on some inputs. 84

proof assistant A specialised software system that is based on formal logic or type theory
and is designed to support formal reasoning by mechanically checking correctness of
proofs. 50

property-based testing A type of testing which includes generating a number of pseudo-
random test cases which satisfy a certain property. 50

REDFIN REDFIN stands for ‘REDuced instruction set for Fixed-point & INteger arith-
metic’. This instruction set and the corresponding processing core were developed by
RUAG Space Austria GmbH for space missions. i, vii–ix, 4–6, 8, 9, 11, 12, 22, 24–26,
28, 30–34, 55, 59–67, 72–80, 82–84, 89, 92, 94, 96–99, 101–104, 106, 112, 113, 115, 117,
118, 121, 122, 124, 125, 127, 128, 131, 132, 137, 139–143

referential transparency An expression is referential transparent if its value only de-
pends on its textual context, and not on some notion of computational history. 38

RISC reduced instruction-set computer. 30, 31

SBV SMT Based Verification. 80, 90

side effect A function is said to have side effects, or to be effectful, if it performs some sort
of an additional action besides computing a value from it’s arguments. For example,
printing something to standard output, or writing to a file. 38

TDD Test-Driven Development. 15

total correctness A program p is called totally correct with respect to a specification s if
it is functionally correct (with respect to s) and it terminates for every input. 84

xii

totality A computation is called total if it terminates and produces a value for every value
in its domain. 39

Turing-complete A computational system that has a property of Turing completeness.
38

type constructor A type constructor can be though of as a type-level function, that re-
ceives zero or more type arguments and constructs the algebraic data type it belongs
to. 42, 96

type signature The first line of a function definition in Haskell that states the type of the
function.. 38, 46

UVVM Universal VHDL Verification Methodology. 3

xiii

Chapter 1

Introduction

Space engineering is famous for the rigour of design, testing and verification of both hardware
and software components of systems. Such rigour is motivated by the fact that space
electronics is exposed to stress factors that never occur on Earth: radiation, extremely low
or high temperatures and absence of gravity. To achieve high fault tolerance, mission-critical
circuits are replicated with double or even triple redundancy [1], and are implemented in
space-qualified one-time programmable field-programmable gate arrays (FPGAs) or custom
application-specific integrated circuits (ASICs). Prohibitive expensiveness of both space-
grade FPGAs and small-batch manufactured ASICs is the primary motivator for extensive
pre-production design and functionality verification: once an ASIC has been manufactured
or an FPGA programmed, a design error discovered at a later stage would have an immense
cost.

Software bugs, as opposed to hardware ones, are not set in stone. However, last-resort
mitigation techniques such as in-mission software updates can become mission-ending [2].
Therefore, validation and verification of control software is essential to avoid potential crit-
ical errors like integer overflows [3] and incorrect unit conversion [4]. Unfortunately, even
a formally verified system can expose unwanted behaviour when deployed in space. In [5],
the authors analyse undesired triggering of safety-preserving freezes-in-place behaviour of
Robonaut2 — a humanoid robot that deployed at International Space Station. Levenson [6]
analyses the Lockheed Martin Astronautics (LMA) Centaur’s failure to deliver the Milstar

1

satellite to the intended geostationary orbit of 22,300 miles. The satellite was instead deliv-
ered to a different orbit, due to miscoordination of Centaur’s Inertial Measurement System
(IMS) software and Flight Control Software.

All these systems were developed following strict reliability and dependability guidelines,
with great attention paid to the tiniest detail of subsystem interaction. However, software
bugs and hardware design flaws still occurred.

In this thesis, we focus specifically on formal specification and verification of software
targeting one specific subsystem of a space satellite. We therefore restrict the scope to
that one subsystem, and do not consider the satellite as a whole. However, preventing the
mishaps referenced earlier in this section would most likely require a system-wide effort.

The subsystem in question is controlled by a custom processing core, and the control
programs target this core’s instruction-set architecture (ISA). Further in this chapter we
summarise the techniques related to formal specification and verification of instruction-set
architectures and machine code programs.

The research project that has sparked most of the work behind this thesis has grown
form the collaboration of the industry and academia. While our research is academic in
nature, we have been closely collaborating with space engineers at RUAG Space Austria to
learn about their outlook on formal verification and to guide our research efforts towards
the needs of practitioners.

1.1 Microprocessor formal specification and verification

Formal methods have brought a generous harvest to microprocessor designers. Formal veri-
fication techniques and, specifically, model checking, are being widely used in industry for
specification and verification of correctness of hardware designs. These designs are supplied
to verification tools as specifications in an Hardware Description Language (HDL). The most
widely accepted industry standard HDLs are VHDL [7] and System Verilog [8]. Another
prominent HDL is Bluespec [9] — a modern Hardware Description Language which is an
extension of the Haskell programming language. Bluespec also provides a System Verilog
frontend for interoperability for other verification tools. Major vendors in the microprocessor
industry employ specialised languages to specify both the design of their microarchitectures

2

and the semantics of ISAs. For example, ARM uses ISA-Formal [10] and SAIL [11]; Intel
and AMD use ACL2 [12], and the RISC-V International uses Alloy for the specification of
the memory model [13]. These languages were designed to serve as tools for specifying ISAs
in a way that allows deriving interpreters and formal verification tools, and are now used as
the primary source for the corresponding ISA manuals, substituting prose and pseudocode
with formal and executable specifications.

In this thesis, we develop a framework for ISA specification and program verification,
which leverages existing and novel functional programming techniques to reduce code repe-
tition and improve the structure of the implementation. We expand the review of previous
work in the next chapter 2.

1.2 Formal methods in space industry

Space engineering has a high degree of adoption of hardware formal verification techniques.
For example, the European Space Agency (ESA) promotes Universal VHDL Verification
Methodology (UVVM) — an open-source methodology that governs the architecture of
VHDL testbenches that adhere to the European Cooperation for Space Standardization
(ECSS) standards such as “ECSS-Q-ST-60-02C — ASIC and FPGA development” [14].

When it comes to ensuring correctness of software system components, current practice
in space engineering has very limited uses of formal verification techniques. Mostly, the
verification is performed by means of conventional simulation and testing in the form of
unit and integration tests.

The ECSS standard “ECSS-Q-ST-80C Rev.1 — Software product assurance“ [15] re-
quires the supplier to define, justify and apply measures to assure dependability and safety
of critical software. According to the standard, these measures can include:

1. use of software design or methods that have performed successfully in a similar appli-
cation;

2. insertion of features for failure isolation and handling (ref. ECSS-Q-HB-80-03, software
failure modes and effects analysis);

3. defensive programming techniques, such as input verification and consistency checks;

3

4. use of a “safe subset” of programming language;

5. use of formal design language for formal proof;

6. 100% code branch coverage at unit testing level;

7. full inspection of source code;

8. witnessed or independent testing;

9. gathering and analysis of failure statistics;

10. removing deactivated code or showing through a combination of analysis and test-
ing that the means by which such code can be inadvertently executed are prevented,
isolated, or eliminated.

Some of these measures require direct human intervention, whereas others may be han-
dled by an automated formal verification tool. Of particular interest are measures 3, 4, 5,
6, 9 and 10. In this thesis, we focus on building a formal verification framework that uses
formal methods and programming languages techniques to facilitate assurance that these
measures are applied.

To provide a more detailed account on how we are going to address these measures, we
need to be able to speak more concretely about a particular space system that the software
targets. We there for introduce the subject of the case-study of this thesis: the REDFIN
instruction-set architecture.

1.3 Motivating case-study: the REDFIN instruction-set ar-

chitecture

Many spacecraft subsystems rely on integrated circuits to perform control tasks or simple
data processing. Typically, these integrated circuits are realised with FPGAs, benefiting
from their flexibility and comparably low cost. Modern space-qualified FPGAs that can
withstand radiation in Earth orbit or deep space have a limited amount of programmable
resources, and it is often not feasible to implement a fully-fledged processor system in such

4

an FPGA next to the mission-specific circuitry. The REDFIN1 instruction set was developed
to address this issue and meet the following goals: (i) simple instruction set with a small
hardware footprint, (ii) reduced complexity to support formal verification of programs, and
(iii) deterministic real-time behaviour.

1.3.1 REDFIN Instruction Set and Microarchitecture

REDFIN instructions have a fixed width of 16 bits. The instruction set is based on a register-
memory architecture, i.e. instructions can fetch their operands from registers as well as
directly from the memory. This architecture favours a small register set, which minimises
the hardware footprint of the processing core. Furthermore, the number of instructions in a
program is typically smaller in comparison to traditional load/store architectures where all
operands have to be transferred to registers before any operations can be performed. There
are 47 instructions of the following types:

• Load/store instructions for moving data between registers and memory, and loading
of immediate values.

• Integer and fixed-point arithmetic operations.

• Bitwise logical and shift operations.

• Control flow instructions and comparison operations.

• Bus access instructions for read & write operations on an AMBA AHB bus.

The REDFIN processing core fetches instruction and data words from a small and fast on-
chip SRAM. This only allows for execution of simple programs, however, it also eliminates
the need to implement caches and thus removes a source of non-determinism of conventional
processors. High performance is not one of the main goals, hence the core is not pipelined
and does not need to resolve data/control hazards or perform any form of speculative
execution. These properties greatly simplify worst-case execution time analysis.

1REDFIN stands for ‘REDuced instruction set for Fixed-point & INteger arithmetic’. This instruction set and
the corresponding processing core were developed by RUAG Space Austria GmbH for space missions

5

Memory
(Data area)

Register 1
Register 2
Register 3
Register 4

ALU

Figure 1.1: REDFIN’s register-memory architecture, as per REDFIN V2 data sheet2.

1.3.2 Intended use-cases for REDFIN

As we have noted before, the REDFIN core is intended to be deployed into highly-specialised
subsystems of space satellites. When designing a satellite system, the engineering team must
determine whether a certain system should be driven by REDFIN or by another logical
unit (for example an ASIC or a conventional processing core). REDFIN is designed to
act as a substitute for highly specialised ASICs, and therefore should carry only a very
limited functionality. The informal guidelines on program design that we have received
from engineers as RUAG Space are:

• subroutines should be very short, rarely exceeding 100 lines of hand-written assembly

• the subroutines should be triggered by the system’s central unit

Note also that REDFIN ISA does not have a C compiler, as the effort of its implemen-
tation has been deemed unnecessary. If an algorithm is long enough to require a high-level
language, it should not target REDFIN.

These considerations make REDFIN the perfect case-study for ISA-level formal verifica-
tion.

2The data sheet is proprietary and could be obtained on request after signing a non-disclosure agreement.

6

1.3.3 Requirements for Formal Verification

Verification of functional correctness of REDFIN programs, as defined by a requirement
specification, clearly is an essential task for the development of space electronics. There are
also important non-functional requirements, such as worst-case execution time and energy
consumption, which rely on the implementation guarantees provided by the processing core.

To reduce verification complexity, the REDFIN core only allows to execute a single
subroutine whose execution is triggered by a higher-level controller in the system. The im-
plementation guarantees that concurrent bus accesses to the processor registers or memory
do not affect the subroutine execution time. Furthermore, the processor does not implement
interrupt handling. All these measures are taken to provide real-time subroutine execution
guarantees and make the verification of non-functional properties feasible.

Despite these restrictions the REDFIN core has already proved its effectiveness for simple
control tasks and arithmetic computations as part of an antenna pointing unit for satellites.
Nevertheless, verification can be difficult and time-consuming, even for small and simple
programs. Verification activities, following engineering standards for space electronics, typ-
ically outweigh programming and design tasks by a factor of two3 in terms of development
hours. Usually verification is performed via program execution on an instruction set simula-
tor or a hardware model of the processor. Manually deriving test cases from the specification
is cumbersome and error-prone and simulation times can become prohibitively long with a
large number of tests that are often needed to reach the desired functional and code cover-
age. Formal verification methods can prove that a program satisfies certain properties for
all possible test cases and are therefore immensely valuable for completing the verification
with superior efficiency and quality.

1.4 Methodology and contributions

1.4.1 A generic semantics-based verification framework

In this thesis, we develop a semantics-based methodology for constructing a generic verifica-
tion framework for ISA-level programs. The framework has a modular structure and makes

3Based on experience of RUAG Space engineers.

7

a clear separation between the ISA-specific and system-independent modules.
ISA-independent modules include:

• symbolic execution engine

• property specification language

• the core functionality of the Integrated Development Environment (IDE)

ISA-specific modules include:

• the ISA state: execution environment for programs

• the semantics of the particular ISA: how the state is transformed by instructions

• the syntax of the assembly language to write programs in

The framework can be instantiated for any instruction-set architecture by implementing
the ISA-specific modules. The ISA-independent modules can be reused as-is.

1.4.2 Methodology of REDFIN program verification

We promote usage of formal verification and programming languages theory-inspired tech-
niques for designing and verifying spacecraft software. By using these techniques, we imple-
ment the following measures required by ESA standard “ECSS-Q-ST-80C Rev.1 — Software
product assurance“:

• We use first-order logic and dependent types as formal specification techniques to
specify behaviour of REDFIN programs;

• We use symbolic execution to achieve 100% code coverage: every execution path in
the program is checked for compliance with the formal specification;

• The REDFIN core uses “defensive program techniques” to check for integer overflow,
memory safety and handling other failures. We employ symbolic execution to prove
that these failures never occur in programs that comply with the specification;

• We use control-flow analysis and symbolic execution to detect dead code.

8

Using the verification framework developed in this thesis, we achieve high compliance
with the ESA’s Software product assurance standard. By providing high degree of automa-
tion and user-friendly interfaces, we enable formal verification techniques to be integrated
into everyday workflow of space engineers.

1.4.3 Contributions

We instantiate the generic verification framework for the REDFIN ISA by providing the
following:

• Semantics of REDFIN instruction set architecture implemented as a EDSL in Haskell;

• A tool chain for developing REDFIN programs comprising an assembler and a set of
command-line tools for program simulation and testing;

• A specification language for functional properties of REDFIN programs that compiles
to REDFIN assembly;

• A symbolic execution engine for REDFIN programs that supports verification of pro-
gram equivalence, safety and liveness properties of programs and Worst-Case Execu-
tion Time analysis;

• An IDE that provides a single point of entry to the developed tools and an interactive
explorer for symbolic execution traces and verification results.

Alongside that, the thesis contributes two novel functional programming techniques:

• Selective Applicative Functors [16] provide an abstraction for effectful computations
with limited dynamic dependencies. The Haskell implementation of the verification
framework for REDFIN uses Selective Applicative Functors in its symbolic execution
engine;

• Fine-grained store abstraction is used as the metalanguage for defining the semantics
of instructions in a way that allows multiple interpretations of the same semantics:
efficient simulation, symbolic execution and static analysis.

9

1.4.4 Further applicability

We believe that the approaches developed in this thesis can be applied to a wide range of
instruction-set architectures and bytecode languages. Of particular interest are the low-level
languages of blockchain platforms, such as EVM (Ethereum[17]) and TEAL (Algorand[18]),
and also the WebAssembly[19]. These languages are lightweight and emphasise correctness
over efficiency, therefore are amenable to formal modelling and verification. We expand on
this direction in the Future Work (chapter 7).

1.4.5 Publications

1. Steven Keuchel, Sander Huyghebaert, Georgy Lukyanov, and Dominique Devriese.
“Verified symbolic execution with Kripke specification monads (and no
meta-programming)”. In: Proceedings of the ACM on Programming Languages,
Issue ICFP, 2022. Full text (Open Access).

2. Georgy Lukyanov, Andrey Mokhov, and Jakob Lechner. “Formal Verification of
Spacecraft Control Programs”. In: ACM Transactions on Embedded Computing
Systems (2020). Full text.

3. Steven Keuchel, Georgy Lukyanov, and Dominique Devriese. “Katamaran: semi-
automated verification of ISA specifications”. In: REMS-DeepSpec 2020. Ex-
tended abstract.

4. Andrey Mokhov, Georgy Lukyanov, Simon Marlow, and Jeremie Dimino. “Se-
lective Applicative Functors”. In: Proceedings of the ACM on Programming
Languages, Issue ICFP, 2019. Full text (Open Access).

5. Andrey Mokhov, Georgy Lukyanov, and Jakob Lechner. “Formal Verification of
Spacecraft Control Programs (Experience Report)”. In: Haskell Symposium
2019. Full text (Open Access).

6. Georgy Lukyanov and Andrey Mokhov. “Concurrency Oracles for Free”. In:
Proceedings of the International Workshop on Algorithms & Theories for the Analysis
of Event Data 2018. Full text (Open Access).

10

https://dl.acm.org/doi/10.1145/3547628
https://doi.org/10.1145/3391900
https://pldi20.sigplan.org/details/rems-deepspec-2020/7/Katamaran-semi-automated-verification-of-ISA-specifications
https://pldi20.sigplan.org/details/rems-deepspec-2020/7/Katamaran-semi-automated-verification-of-ISA-specifications
http://doi.acm.org/10.1145/3341694
http://doi.acm.org/10.1145/3331545.3342593
http://ceur-ws.org/Vol-2115/ATAED2018-112-127.pdf

1.5 Structure of the thesis

Chapter 1 — Introduction
This chapter introduces the space engineering domain and motivates building a formal

specification of the REDFIN ISA and a verification toolchain based on the semantics.
Chapter 2 — Background

In the first half of this chapter, section 2.1, we provide background on known techniques
and methods which comprise the state of the art in ISA specification and verification of
low-level programs. We discuss the approaches to building ISA specification languages and
frameworks. Additionally, we outline the support for formal specification and verification
of programs targeting the ISAs which these languages and frameworks provide.

In the second half of this chapter, section 2.2, we provide a short introduction in func-
tional programming in Haskell, since knowledge of certain functional programming tech-
niques is essential for understanding the theoretical contributions of this thesis.
Chapter 3 — Instruction-set architecture semantics

In this chapter we present two approaches to defining ISA semantics we use in this thesis.
We build the foundation for the chapters 4 and 5, which discuss in detail the implementation
of verification frameworks for REDFIN based on each of the two approaches.

First, we present the concrete and abstract syntax of the REDFIN ISA.
Following the syntax, we present the coarse-grained monadic state transformers and a

semantics based on them in section 3.3.1.
As a refinement of the first approach, we build the second one which we base on the novel

concept of fine-grained state transformers. This approach enables us to build a dataflow-
aware semantics for REDFIN, which we present in the section 3.3.2.
Chapter 4 — REDFIN semantics and program verification with coarse-grained
monadic state transformers

We expand on section 3.3.1 and present a verification framework based on the coarse-
grained semantics, together with a case-study of spacecraft control program verification.
Chapter 5 — REDFIN semantics and program verification with fine-grained
state transformers

We expand on section 3.3.2 and present a verification framework based on the fine-

11

grained dataflow-aware semantics, together with a case-study of spacecraft control program
verification.
Chapter 6 — Tool support

We present the user-facing tools of the verification framework for REDFIN. To present
two verification case studies of REDFIN programs that were carried out in collaboration
with the authors industrial supervisor, Dr Jakob Lechner, who has been employed as an
FPGA and ASIC engineer with Ruag Space Austria Gmbh.
Chapter 7 — Conclusion and future work

We outline the contributions of the thesis and point out possible opportunities for future
work on build verification tools for spacecraft control programs.

The flow of this thesis is mostly linear, and the chapters can be read in the order suggested
by the figure 1.2. Chapters 4 and 5 can be read independently of each other, and the
background chapter may be skipped by an expert reader.

Introduction

Chapter 1

ISA Semantics

Chapter 3

Tool Support

Chapter 6

Conclusion and
Future Work

Chapter 7

Chapter 4

Monadic
Semantics

Fine-grained
Semantics

Chapter 5

Background

Chapter 2

Program Verification

Functional Programming

Figure 1.2: Chapter flowchart

12

Chapter 2

Background

We provide background on techniques and methods used in this thesis. The purpose of
this chapter is both to introduce the concepts of formal software verification and functional
programming which this thesis builds on, and to highlight the gaps in the state of the art
that we aim to cover with our contributions.

This chapter contains two parts. First, we discuss formal verification of software: its
purpose and current state, focusing on low-level languages such as assembly and machine
code. Second, we introduce the necessary background on functional programming.

2.1 Software verification

Software verification is a big research and practice field that develops methods that aim to
find errors in software programs. These methods range from simple manual functionality
testing that could be carried out by the program developer’s friend over a cup of coffee
to multiple person-years efforts aimed at formally verifying computer operating systems
and compilers. One pair of axis that software verification methods could be fitted on is
completeness and setup effort. Completeness refers to method’s ability to check all possible
inputs and execution scenarios, and setup effort indicates how much time must be spent on
preparation: specification development and method understanding. Additionally, we depict
how much automation the method provides, i.e. the amount of human intervention required

13

for the testing process. Let us put several data points on the plane, fig. 2.1, equipped with
these axes.

Setup effort

C
o
m

p
le

te
n

e
s
s

Manual testing

High

Unit tests

Property tests

Formal methods

Medium

Automation

Low

Figure 2.1: Completeness and costs of software verification methods

Manual Testing
Manual testing, while usually having low setup costs, can be time-consuming and is

difficult to reproduce and, therefore, is rarely complete. Sometimes, however, manual testing
is a perfectly viable option: there is no need to formally verify that a PhD student’s web
page accurately shows all their published papers, since it is enough to open it in a web
browser.

Unit Testing
Most software programs require more serious correctness guarantees. A command-line

tool or a web application that have millions of users worldwide need to have their core
functionality thoroughly tested. Moreover, the testing process needs to be automated to
avoid hours of manual labour on release of every new program version. The current soft-
ware engineering practice suggests using unit-tests to verify the functionality of application
components. Unit-tests provide a simple and intuitive paradigm: the developer needs to
identify test inputs for a unit of their program and the results the unit is supposed to
produce for these particular inputs. The unit-testing framework will run the program with
these inputs and verify that the expected results are produced. Wide adoption of unit test-

14

ing in its modern form has started with JUnit [20] for the Java object-oriented programming
language, giving rise to the paradigm of Test-Driven Development (TDD). In this paradigm,
the software engineer first specifies the intended behaviour of the program by a collection
of test for every program’s unit. This approach is considered one of the best-practises of
today’s software engineering.

Unit-tests are automated. They could be run both locally by the developer and on a
remote server by a build system, facilitating continuous integration. However, the complete-
ness of unit tests is restricted to the amount of testing inputs the program’s developers are
willing to design and maintain.

Property Testing
Completeness of unit tests is restricted: every test represents one point in the program’s

input domain. Therefore, creating and maintaining a test suite for a large system is a burden,
and sometimes makes introducing changes very difficult, since large test suites may become
“overfitted” to the current implementation of units. A more progressive approach is property-
based testing, where single-input tests evolve into properties — equality invariants that tie a
unit’s inputs to its output. Property tests allow generating large sets of input-output pairs
and check that the program under test satisfies the property with high assurance.

Property testing frameworks emerged in the Haskell programming language ecosystem,
the most popular being QuickCheck [21], SmallCheck [22] and Hedgehog [23]. Other popular
programming languages now provide similar tools too.

Property tests provide an improvement over unit tests in terms of automation, since the
derivation of test cases is performed automatically. Completeness is improved too: instead
of one specific input, the program can be easily tested with hundreds of inputs derived from
the property, making corner cases much harder to miss. However, coming up with a good
property to test can be difficult for complex program units, thus higher start up human
effort is required. Property-based testing requires adjusting the software engineer’s mindset
to architect the programs in a more modular and compositional way.

Software testing methodologies provide low-overhead ways of verifying correctness of
programs. The program’s components are enveloped in test suites — collections of unit
test cases or properties that specify the behaviour. Having a comprehensive test suite for
a software program makes refactoring the codebase and introducing new features safer: an

15

unintended regression will likely be caught by the test suite. However, test suites remain
incomplete, and most likely implicitly so. The process of software verification by testing
is rarely performed according to a comprehensive specification; most often the intended
behaviour of the system is described in prose and informal diagrams.

Formal Methods
The term formal methods has become a buzzword in the wider software development

community. Colloquially, if a piece of software is “formally verified”, it is believed to be
correct, where the definition of correctness is seldom given any attention. However, the very
essence of formal methods is the ability to formally, mathematically, define what does it
mean for a software or hardware system to be correct.

Definition (Formal Software Specification):
A formal specification of a software system is a mathematical model of the system which

considers a specific collection of the system’s behaviours and their invariants.

A formal specification can be a transition system, a Petri Net, a collection of statements in a
logic, type theory or a different formal reasoning framework. The crucial thing though that
the specification must be formal. i.e. it could be reasoned about, mathematically, within a
well-founded theory.

Definition (Formal Software Verification):
Formal verification of a software system is a process of establishing, though formal

mathematical reasoning, that the implementation of the system conforms to the system’s
formal specification.

The process of formal verification ensures that a formal mathematical model of the
system conforms to the system’s formal specification. It is vital that both the specification
and the model are expressed in compatible mathematical frameworks.

Software testing can be viewed though this lens too. In the case of testing, the speci-
fication is the test-suite, and the model is the implementation of the system itself. Very
often both the test suite and the program will be implemented in the same programming

16

language, but sometimes testing may be handled by an external program.

2.1.1 Formal verification of ISA programs: a related work overview

In this section, we overview the research performed to date on how to formally specify and
verify an ISA program. By an ISA program we mean a program in an assembly language for
a specific ISA, or in machine codes of the ISA itself. It is not important whether the program
has been manually implemented or compiled from a high-level language. Verification of such
programs involves building a model of the underlying ISA; therefore, the projects we will
discuss often include work on both program verification and ISA formal modelling.

We organise this section as follows:
First, we overview instruction-set architecture modelling languages, which are specifically

created to build formal models of ISAs. These languages aim to provide built-in automated
verification of essential properties of individual instructions and the ISA as a whole, but
have limited or no support for program verification.

Second, we overview models of specific ISAs in more general purpose formal frameworks.
Since these models consider a fixed ISA, they are able to focus on the semantics of several
instructions executed in sequence, thus achieving whole program verification.

Finally, we position the contributions of this thesis in the presented body of related work.

2.1.1.1 ISA specification languages and frameworks

The design and implementation of ISA and processor description languages and frameworks
is a flourishing research sub-field on the edge of Programming Languages and Systems.
These languages tend to become more specialised than general HDLs, focusing specifically
on processor design, ISA specification, or both. There is a number of standalone domain-
specific languages that provide several backends for program simulation, formal verification
and building documentation. Other languages follow the alternative methodology of em-
bedding into an existing metalanguage, often of a proof-assistant such as Coq. We overview
both the standalone languages and the EDSLs in this section.

2.1.1.1.1 Standalone DSLs for ISA specification In their book “Processor Descrip-
tion Languages” [24], Mishra and Dutt coin the term Architectural Description Languages

17

(ADLs). The book was published in 2008, and described 11 languages developed across
academia and industry to support design and implementation of application-specific instruction-
set processors (ASIPs). The ADLs support all stages of processor development: from design
to layout and fabrication. However, they were rarely used for general-purpose processors.
Since the book was published, there was a significant push from the research and indus-
trial communities to create languages that would be able to accommodate the complexity
of general-purpose instruction-set architectures — ISA specification languages, which, in
Mishra and Dutt’s taxonomy are called “Behavioural Architecture Description Languages”.

In contracts to ADLs, ISA specification languages consider only the ISA itself, and are
not intended to get involved in any way with microarchitectures implementing the ISA.
Therefore, they focus on providing facilities to describe the semantics of an ISA in an
implementation-agnostic way. In a way, ISA specification languages are an evolution of ISA
manuals, with the informal prose and pseudocode substituted with a formal specification of
the instruction semantics.

Most major processor vendors have internal ISA specification languages or frameworks.
However, to our knowledge, only Arm Ltd. have made their formal ISA specification pub-
lic [25]. At Arm, the instruction-set architectures are specified in Arm Architecture Specifi-
cation Language (ASL) — an imperative language with a specialised static type system that
tracks bitvector length, thus eliminating off-by-one errors in specification. The specification
written in ASL are the source for both the ISA manuals and the backend simulation and
formal verification tool-chains. An overview of Arm’s internal use for ASL and the story
of its design, implementation and inter-company adoption can be found in Alastair Reid’s
PhD thesis [26].

18

Figure 2.2: Sail language overview [11]

The REMS group at the Cambridge University Computer Laboratory has contributed
extensively to the body of research on formal ISA specification. Anthony Fox developed
the L3 ISA specification language [27][28], which was used to specify the ARMv7 [28] and
ARMv8 [29] instruction-set architectures. The L3 specifications are executable and ex-
portable as HOL4 interactive theorem prover definitions for deductive proof. Later, another
ISA specification language, called Sail [11], has been developed by members of the REMS
group and their collaborators in other universities. Sail is inspired by L3, and improves
over it in terms of language design, providing syntactic and semantics features specifically
tailored for writing and maintaining large, complete ISA specifications. Another inspiration
for Sail for the ASL language, and the ARMv8.3 ISA specification has been automatically
translated to Sail from the Arm’s public and internal ASL specs. As other languages, Sail
provides derived simulators for the specifications, generates theorem proved definitions, and,
additionally, provides a symbolic execution engine for verifying machine code programs,
which is a unique feature for an ISA specification language. To our knowledge, Sail is the
most advanced ISA specification language to date, and the corpus of the ISA specification
implemented in it is the largest and the most complete.

19

Lyrebird (NICTA and UNSW) [30] — a ISA specification DSL used to support the
development of seL4 [31] formally verified operating system microkernel.

Probably one of the earliest ISA specification languages was Barbacci’s Instruction set
processor specification (ISPS) [32] language. ISPS has been used in a vast body of research
on compiler-related techniques.

We conclude this section with a reminder, that the referenced projects develop stan-
dalone domain-specific languages. Standalone, as apposed to embedded, languages sacrifice
the flexibility of using a powerful metalanguage for the user-experience and performance
benefits. Getting the design and implementation of a DSL right is very important for it
to be successful. The alternative approach is to embed the language into a flexible meta-
language, thus getting a possibility to adapt the metalanguage’s type-system, runtime and
tool-chain for the purposes of the EDSL.

2.1.1.1.2 ISA specification EDSLs In the latest years, there has been a surge of project
that leverage functional programming languages and proof assistants to build ISA specifi-
cation EDSLs.

The Kami [33] project is not exactly an ISA specification language, but rather an EDSL
for specifying Bluespec-style hardware components. Kami is embedded in the Coq proof
assistant, and uses dependent types and proof automation to specify, verify and synthesise
hardware implementations that could be directly deployed onto FPGAs. The authors report
scaling their approach up to building a formally verified processor with cache-coherent
shared memory and pipelined cores implementing (the base integer subset of) the RISC-
V instruction set. This work could be used as a bottom layer of a formal specification
approach.

The Bedrock project [34] is a Coq framework that uses computational separation logic
to achieve close to fully automatic verification of low-level programs. The project is long-
standing and has produced numerous advances in Coq-embedded separation logic-based
proof systems.

Another Coq-embedded EDSL is Katamaran [35], which makes an emphasis on building
a verified semi-automatic verification engine for ISA-wide properties. The main goal of
the project is specification and verification of hardware capability-enabled ISAs, such as

20

CHERI [36]. Naturally, this goal requires modelling the target ISA, and Katamaran aims
to leverage Coq’s type system and proof automation to make the models rigorous, but, at
the same moment, easy to reason about.

ISA-level formal modelling is requires by many research and industrial projects in vari-
ous application domains such as formally verified software and hardware, compilers, high-
performance computing and others. Many of these projects only require a part of the ISA
to be formally specified, and tend to use the metalanguage of the wider project for the ISA
specification. In the following section we overview these models.

2.1.1.2 Specific ISA models

The sel4 project [31], in addition to the Lyrebird language mentioned in the previous section,
also employs an Isabelle/HOL specification of the ARMv7 ISA [37] to support verification
of the project’s C implementation.

In [38] and [39] the authors develop a Proof Carrying Code [40]-related technique to
verify complex threading libraries and other examples involving first-class code pointers.

MIT CSAIL aim to create a multi-purpose model [41] of RISC-V ISA that can be reused
by other researches for their specific purposes so they do not have spend time on their own
formalisations.

The Vale project models the x86-64 ISA [42] to support verification of cryptographic
primitives implemented as highly-optimised assembly programs.

Dam at al. developed in HOL4 a verified translation of ARMv7 programs into BAP [43],
a multi-ISA binary analysis platform developed at CMU. The authors build on the model
to facilitate verification of an ARM-based hypervisor.

Degenbaev has developed a formal Coq model of the x86-64 ISA, with focus on making
the specification compact and readable [44].

Kaufmann at al. [45] have built special support into the ACL2 [46] theorem prover to
specify microprocessor semantics.

In [47], the authors discuss integrating a symbolic execution-based reasoning into the
ACL2 theorem prover to verify x86 programs at scale.

One of the most recent complete models of x86-64 ISA had been developed by Dasgupta
at al. [48] using the K Framework. The authors report finding bugs both in the ISA manual

21

itself and other formal models.

2.1.1.3 Conclusion

These projects and papers constitute only a fraction of the body of research on ISA specifica-
tion and low-level program verification. We do not aim for this review to be comprehensive,
but rather would like to highlight a general trend that has emerged over the past years. It is
now considered very important to aim for a complete and comprehensive model of the ISA
in question. However, building a complete and faithful ISA specification from scratch is a
huge effort, requiring experts with diverse backgrounds and a lot of time. It can be view
as an instance of the Pareto principle: it’s relatively easy to have 80% of the work done in
20% of time budget, but then the rest takes the remaining 80% 2.3.

Figure 2.3: Pareto principle for ISA model completeness

Most of the time these remaining 20% are unimportant. As we saw in section 2.1.1.2,
many ISA models are tailored for purposes of a specific research project, therefore it is only
natural for them to be incomplete. We have experienced this issue ourselves, since our model
of the REDFIN ISA does not consider every aspect of it, even though this ISA is relatively
small. We, instead, chose to focus on researching the programming paradigms that allow
building symbolic execution-based verifiers in functional programming languages.

22

The languages and tools discussed in this section 2.1.1.1 support building ISA specifica-
tions in a more productive and structured way. In future, we would probably see a number
of standard, comprehensive models of ISAs implemented in a language like SAIL. These
models will be community driven, but also will have support of the microprocessor vendors
like Arm, Intel and AMD. Having such model will allow researchers to focus on the appli-
cations, building on the solid foundations and not needing to reinvent the wheel of the ISA
specification every time.

2.1.2 Caveats of ISA-level formal specification

In this section, we discuss the major point that need to be kept in mind when developing a
specification of an ISA, and when building on top of this specification a program verification
tool.

2.1.2.1 Numbers are not what they seem

Many bugs arise from the discrepancy between the mathematical ideas that are used to
describe what computer programs are supposed to do and the implementations of these
ideas as actual computer hardware and software. In mathematics, we think about numbers
as mathematical objects, starting from the set of natural numbers N and gradually building
up to the set of real numbers R and complex numbers C. We carefully design the formal
system for the definitions of numbers to be recourse and prove many useful theorems about
them. We calculate derivatives of functions and solve differential equations — all that being
possible and provably correct thanks to the solid mathematical foundation we build upon.
However, when we aim to employ computers to help us in our calculations, we have to
abandon the beauty of pure continuous mathematics and succumb to the restrictions of
the digital world. However, we sometimes fail to remember that the machine integers we
have to work with are only a finite subset of the set of integer numbers Z, and the double
precision floating-point numbers are not uncountable, like the real real numbers are. This
discrepancy can be considered a leaking abstraction, meaning that thinking of the machine
numbers corresponding to mathematical numbers often is convenient, but there are corner
cases when such thinking lets terrible bugs slip into programs. Let us consider some common

23

bugs that are products of the number representation discrepancy.
Two’s complement machine integers

The two’s complement representation is one of the most common ways to represent
signed integers in modern computers [49], and is the one used in REDFIN too. The num-
bers are represented as bit vectors of a specific length. The two’s complement of a bit
vector is calculated by inverting the bits and adding one. For example, consider bit vectors
length 3, then 010 represent the decimal integer number 2, while its two’s complement,
110, represent -2. Two’s complement representation has many convenience advantages over,
for example, sign bit representation, such as having unique representation for 0 and funda-
mental arithmetic operations of addition, subtraction, and multiplication being identical to
those for unsigned binary numbers. However, taking a look a table 2.1 reveals that two’s
complement representation has more space for negative integers than for the positive! In
general, two’s complement bit vector of length N represents integers from −2N to 2N − 1.
This subtle fact may lead to integer overflow and must be accounted for when verifying
programs.

Decimal value Two’s complement representation
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Table 2.1: Integers represented as two’s complement bit vectors of length 3

Integer overflow
To demonstrate the possibility of integer overflow in programs working with two’s com-

plement integers, consider the absolute value functions and its implementation in Haskell:

|x| =

x if x ≥ 0

−x if x < 0

abs :: Num a => a -> a -> a
abs x = if x >= 0 then x else -x

The type signature of the abs function uses the Num type class to restrict the type
variable a to numeric types. The abs function can thus be used with the arbitrary precision
Integer type which denotes the mathematical set Z of integer numbers. However, will

24

also be used with, for example, the Int8 type, which is an instance of the Bounded type
class, and is implemented via two’s complement bit vectors of length 8. Now, according to
the mathematical specification of the absolute value function, abs should return a positive
value for a negative argument. However, explicitly specifying the argument to be of type
Int8 and thus forcing the result to be of the same type reveals the issue:

> abs (minBound :: Int8)
-128

The fact that the two’s complement representation is asymmetrical comes into play and
causes a negative result. Let us take a closer look at the evaluation of this program:

abs (minBound :: Int8)

= { Bounded instance for Int8 }

abs (-128)

= { Definition of abs }

if (-128) >= 0 then (-128) else -(-128))

= { Semantics of the conditional operator }

-(-128))

= { Semantics of unary minus }

128

= { 128 overflows the upper bound of Int8 by 1}

-128

The last reduction step is artificially created to illustrate where the integer overflow
occurs.

Overflow in integer and fixed-precision arithmetic has led to a number of mission-ending
bugs in aerospace systems [2] [3]. Verifying the absence of integer overflow is one of the
priorities that we had in mind while designing and implementing the verification framework
for REDFIN that is the main contribution of this thesis. In later sections we will give an

25

account on how REDFIN core itself tracks integer overflow, and how we verify the absence
of overflow in REDFIN programs by symbolic execution.
Detecting integer overflow

There are three methods to detect if an arithmetic operation on signed integers over-
flows [50, p. 170]:

1. Postcondition test using instruction-set architecture status flags

2. Precondition test

3. Extension to a larger signed integer type

The three methods have their advantages and disadvantages. We will now describe them
and discuss their applicability to REDFIN.

2.1.2.1.1 Postcondition test Most instruction-set architectures, including REDFIN, have
a status register that contains a number of status bits, commonly called status flags. If the
arithmetic logic unit (ALU), while performing, for example, addition, detects overflow, the
relevant flag in the status register is set. When a programmer writes a program targeting
a instruction-set architecture, they can examine the overflow status flag after performing
addition and see if the result had overflown.

Postcondition testing does not suite us, since we aim to implement the semantics of the
REDFIN ISA itself, i.e. to define when the overflow flag should be set.

2.1.2.1.2 Precondition test Precondition testing is a portable way to test if an arith-
metic operation will overflow based on the values of the arguments. It involves calculating a
specially designed expression prior to performing the operation. Importantly, the interme-
diate results of the precondition expression will always stay within the bounds of the type
in question. Consider an example precondition for addition of signed integers of width 8:

addWillOverflow :: Int8 -> Int8 -> Bool
addWillOverflow x y = y > 0 && x > maxBound - y

|| y < 0 && x < minBound - y

The precondition analyses the sign of the second argument and, depending on that,
checks if adding the first argument will cause the result to overflow or underflow. Precondi-

26

tions for subtraction and multiplication could be derived too or can be obtained from the
book [50, p. 170] or from the CERT C Coding Standard [51].

2.1.2.1.3 Using a larger signed integer type The third approach is to detect overflow by
promoting the bounded integers to an arbitrary-precision type that denote the mathematical
integers, and comparing the result of the operation to the upper bound of the original
bounded type:

addWillOverflow :: Int8 -> Int8 -> Bool
addWillOvervlow x y = toInteger x + toInteger y > toInteger (maxBound :: Int8)

Haskell provides the type Integer which has arbitrary precision, and the function toInteger
which can be used to convert a value of any integral type to an Integer.

If the metalanguage does not provide an arbitrary-precision integral type, and imple-
menting it is not worth the effort, one can sometimes get away with just a “larger” type.
The sum of two numbers represented as bit vectors of length N will always fit into a bit
vector of length N + 1, while a product will require up to 2N bits. For example, a product
of two values of Int8 can be tested for overflow via promotion to Int16:

addWillOverflow :: Int8 -> Int8 -> Bool
addWillOvervlow x y = fromIntegral x + fromIntegral y > fromIntegral Int8 Int16 maxBound

Here we use Haskell’s fromIntegral function that allows to convert a value of any
type that is an instance of Integral to a type that is an instance of Num. We also use
GHC’s TypeApplications language extension that allows specifying concrete types for
type variables.

Recall that symbolic execution provides a way to explore all possible execution paths
in a program by treating the inputs as symbolic variables, rather than concrete values.
To verify that a program that performs arithmetic operations with symbolic bitvectors
never causes integer overflow, the symbolic execution engine must generate verification
conditions for every execution paths. These constraints will be determined by the choice
of the method to detect overflow. If we choose to detect overflow by promoting the bit
vectors to unbounded integers, the overflow constrains will be formulated in terms of the
logic that has a notion of integers; alternatively, if we choose to detect overflow by checking

27

argument preconditions, the constrains can be formulated in terms of the theory of bit
vectors. In the verification engine for REDFIN we use the precondition test to determine
if an arithmetic operation will overflow, thus keeping the constrains in symbolic variables
in the bit vector theory, like the rest of the other types of constraints generated by the
framework. The paper [52] provides evidence that using the theory of integer arithmetic for
symbolic execution constraints rarely provides significant performance benefits comparing to
the theory of bit vectors. Additionally, promoting bit vectors to integers would complicate
the definition of ISA semantics; thus, we have made the design decision to check for overflow
by evaluating argument preconditions. We will take a closer look at this topic in the
chapters 4 and 5.

2.1.3 Symbolic execution

Symbolic execution is an umbrella term for a set of program analysis techniques based on s
simple idea: evaluating programs with symbolic variables as inputs, allowing to explore the
tree of every possible execution of a program instead of just one concrete execution path.
Symbolic execution is employed in program verification and automatic test generation at
a range of scales and for a wide variety of programming languages. In this thesis, we
use symbolic execution for formal verification of assembly language programs targeting
REDFIN, aiming at exhaustive checking of the programs’ state space, thus yielding a sound
and complete analysis. In this section, we will provide an introduction to symbolic execution
with an accent on assembly code. For a more general introduction we refer to the reader to
a Communications of the ACM review article [53] and the more in-depth survey paper [54].

x + y

x
y

2

2

4

0 5

3 8

3 13

Concrete Symbolic

Figure 2.4: Addition of two variables interpreted as concrete values and symbolic ranges approach.

To execute programs symbolically, we first need to define precisely what are these sym-
bolic values we are intending to evaluate the programs with. We have said already that
we indent to execute programs with symbolic variables instead of concrete input values.
Ultimately, we will be interested in the ranges of values that these variables may take: con-

28

straints on the values will play the key role for verification and test generation. Figure 2.4
shows an example of adding two variables with concrete values and ranges representing
symbolic values constrained to be in a certain small interval.

Before going deeper into symbolic executions, let us zoom out and think more generally
about what is symbolic execution from a more theoretical point of view.

2.1.3.1 An interlude on programming language semantics

An interpreter of a programming language will evaluate the language’s statements and ex-
pressions into a concrete semantic domain. For example, arithmetic expressions can be given
semantics in terms of the set of integer Z or real R numbers. Expressions are usually pure,
i.e. do not have any side effects, and thus can be given such a simple denotational semantics,
that is, every expression can be evaluated into a single value of the domain it denotes. Now,
besides expressions, programming languages will have statements, which are the building
blocks of programs’ control-flow and interactions with the outside world: conditionals, loops,
assignment, IO, exceptions, etc. The statements will usually have side effects: assignment
can introduce new variables or alter old ones, IO primitives interact with the file system or
network and exceptions may cause the program to halt. The most well-established approach
to semantics of programming languages is operational semantics [55], which formulates the
execution of a program as a transition system, where each statement transforms the state
of the system in some way. In programming languages theory, these transition systems
are traditionally formulated as inductive relations, which makes them convenient to reason
about and carry out formal proofs, either on paper or in a proof assistant like Coq [56] or
Agda [57]. Denotational semantics of effectful computations, such as statements of an im-
perative programming language, is an area of active research and there is no consensus what
approach is the best. Moggi has introduced categorical semantics [58], which is sometimes
considered a variant of denotational semantics, and employs the category theoretic notion
of a monad to formulate the semantics of effectful computations. Subsequently, monads
were popularised by Wadler [59] for functional programming and now constitute one of the
corner stones of the Haskell programming language.

Symbolic execution engines are not that much different from the usual interpreters: they
too give semantics to expressions and statements of a programming language. However, the

29

difference lies in the domain which is used for interpretation of programs. Interpreters
perform concrete execution and thus evaluate expressions into concrete values and state-
ments into concrete state alterations, thus resulting in a single concrete execution which is
determined by the values of the program inputs and the environment. Symbolic executions
operates over symbolic inputs and thus must somehow consider all possible executions that
may arise from these inputs. The result of symbolic execution is then a, possibly infinite,
symbolic execution tree which can be thought of as an unfolding of the transition system that
constitutes the operational semantics of a programming language, for a particular program.

The symbolic execution tree of a program is a precise representation of the program’s
all possible executions, and that makes it a great basis for formal verification and analysis
of programs. Each node in the tree corresponds to a state in one of the executions and
is uniquely determined by an ordered sequence of path constraints — logical formulas that
depend on the program’s inputs. By using a constraint solver, we can check these constraints
for satisfiability and thus determine if the state specified by them is reachable. If the state
is reachable, we can ask the solver for concrete values of the input variables that steer the
execution to follow the path to a particular program state, thus essentially producing a unit
test. Even more interestingly, we can use some sort of logic to formulate properties about
programs that can be checked for every reachable state in the tree, thus giving us basis for
formal verification. We can also check a property as we perform symbolic execution, thus
essentially performing model-checking.

The way programs are evaluated to produce a symbolic execution tree, and what is
done during and afterwards, is the subject of symbolic execution as a research area, and,
consecutively, of this thesis. More specifically, we apply symbolic execution to verification
of machine code programs, while often drawing inspiration from programming languages
theory to structure the ways we do it.

2.1.4 Symbolic execution of machine code

In this thesis, we discuss the design and implementation of symbolic execution engines
targeting REDFIN programs. As we have noted before, REDFIN is a control unit for
subsystems of space satellites and is designed with formal verification in mind. REDFIN is
a reduced instruction-set computer (RISC) architecture, and its instruction set is optimised

30

for simple control tasks and arithmetic with integer and fixed-point numbers.
In the verification frameworks we have developed, we perform symbolic execution of

programs in the same form that the REDFIN core itself does: as a list of binary instruction
codes. However, writing programs in such form is unthinkable today, thus we provide
both a low-level assembly language for programming REDFIN and a high-level language of
arithmetic expressions that can be compiled into machine codes and used as a specification
language for equivalence checking. An assembly language adds only a very thin layer of
abstraction on top of an ISA. In the case of REDFIN, the assembly language provides
named labels for program locations and conditional goto macros for forward and backward
jumps to labels. A simple process translates assembly programs into machine code by
resolving the labels into instruction counter values and expanding the goto macros into
jump instructions.

In the previous section, we discussed that in programming languages there is often a
distinction between expressions and statements. The former are pure computations that
can be given semantics simply by evaluating them, and the latter are computations that
have side-effects and need to be treated differently. In the specific case of machine code, we
do not have expressions anymore: since our “programming language” is the ISA itself, we
only can program with the instructions of this ISA. We therefore need to give semantics to
every instruction of the ISA, i.e. specify the transition system that has ISA configurations
for states and instructions for transitions. However, since we are interested in execution
of programs, and not just single instructions, we also need to include the semantics of
fetching and decoding an instruction into the transition system. We will discuss in detail
the semantics of REDFIN instructions in chapters 4 and 5.

We proceed with presentation of symbolic execution of machine code by discussing the
entities a symbolic execution engine should consist of and how it operates them.

2.1.4.1 Symbolic representation of REDFIN ISA data

The REDFIN ISA is a RISC architecture and its ALU can load arguments of the arithmetic
and boolean logical instructions both from its 4 registers and memory, as the figure 2.5
shows. Notably, REDFIN provides separate data and program memory areas.

31

Memory
(Data area)

Register 1
Register 2
Register 3
Register 4

ALU

Figure 2.5: REDFIN’s register-memory architecture, as per REDFIN V2 data sheet.

When designing a symbolic execution engine, one important decision the engineer has to
make is to which parts of the system model completely symbolically and what should be left
concrete. This design decision will affect the balance between the engine’s scalability, i.e.
the ability to handle long and complex programs, and its verification power, i.e what kind
of program properties it can verify. For the framework to be applicable to large programs
in general-purpose programming languages like C or Java, many tools opt out for so called
concolic execution, which combines concrete and symbolic execution and is mainly aimed
to automatically generate test cases completely covering all execution paths. In this thesis,
we are, on the contrary, aiming to stick as much as possible to symbolic representation,
since the simplicity of the REDFIN ISA and the fact that the longest REDFIN programs fit
into only hundreds of lines of assembly. This enables us to provide a verification framework
that allows sound and complete verification of safety properties and programs equivalence
checking.

In our models, REDFIN registers, memory and flags store symbolic expressions. The
registers and memory will store machine integers represented with symbolic bit vectors of
a particular with, while the flags will store symbolic booleans, i.e. the results of equality
or inequality comparisons of symbolic bit vectors. As we have said before, the ultimate
goal of symbolically executing REDFIN programs is to verify their properties by generating
logical expressions that will be checked for satisfiability with a constraint solver. In this
thesis, we use Z3 [60] SMT-solver as the constraint solver and communicate with it using

32

the SMT-LIB2 [61] language. The SMT-LIB2 language is solver-agnostic and thus can be
used with a number of other solvers. We use SMT-LIB2’s QF_BV, a quantifier-free logic of
fixed-width bit vectors, to represent constraints over symbolic variables. The logic supports
arithmetic and logic operations, and bit-precise manipulation of bit vectors, which we will
use for conversion between immediate arguments and the usual values. The formulas of the
logic can have variables, but can not have quantifiers.

Type Name Purpose Representation Bit width
Register R0 General-purpose Symbolic 16

R1 General-purpose Symbolic 16
R2 General-purpose Symbolic 16
R3 General-purpose Symbolic 16
IC Instruction counter Concrete 8
IR Instruction register Concrete 16

Flag Overflow Track integer overflow Symbolic 1
Halted Track program termination Concrete 1
... Omitted here

Data memory 0 Symbolic 8
... Symbolic 8
255 Symbolic 8

Program memory 0 Concrete 8
... Concrete 8
255 Concrete 8

Table 2.2: REDFIN’s data locations

The table 2.2 presents the different data locations of the REDFIN ISA, as they are
modelled in the verification framework described in the chapter 5. In that implementation,
the registers and data memory store symbolic expressions over bit vectors of width 16. We
force some entities to be concrete. The instruction counter, for example, stores the index
of the next instruction to be fetched from the program memory, and needs to be concrete
in order to represent the program memory as a concrete array.

Instruction counter can only be forced to become symbolic by a conditional jump in-
struction. However, the jump instruction in REDFIN can only have immediate argument
offsets, which are inherently concrete. We choose to fork the execution into two branches
of the symbolic execution tree, one where the jump condition is true, and the other where
it is false: this allows us to keep the instruction counter concrete by incrementing it in
the non-jumped state and adding the concrete offset in the jumped state. Ultimately, this
approach leads to the Halted flag to be concrete too, since it can only be set by REDFIN’s

33

halt instruction which will be reachable by a sequence of concrete alterations of the instruc-
tion counter. However, the verification condition of program termination will include the
symbolic path constraints associated with these concrete alterations, therefore it still will
be sound and complete. We will discuss these matters in more details in chapters 4 and 5.

The Overflow flag is altered by arithmetic instructions and after their execution will store
a symbolic boolean that encodes the constraint on the instruction’s arguments which causes
the result to overflow. We discus the overflow conditions in more detail in section 2.1.2.1.

The REDFIN ISA has a number of other status flag that track validity of data and
program memory access, division by zero and input-output bus. We will discuss the other
flags, their representation and use in chapter 5 when talking in detail about semantics of
instructions. We do not consider the IO-related functionality in this thesis at all.

2.1.4.2 Symbolic execution strategies

In the previous section, we have glanced over the symbolic execution strategy we employ in
the symbolic execution engine that will be discussed in chapter 5. We now present a more
general outlook at symbolic execution strategies, their features and how they can be used for
formal verification of machine code programs. We both present the background knowledge
and simultaneously discuss the design decisions we have made in the implementation of our
symbolic execution framework for REDFIN.

Why at all should we be concerned about how we execute programs symbolically? The
answer to this question lies in the challenges that symbolic execution of programs poses, the
main one being the path explosion problem. This problem shows the most if we consider a
naive forward symbolic execution algorithm that forks the state at every conditional jump,
effectively causing the symbolic execution tree to have the number of branches exponential
in the number of conditional jump instructions in the program’s unfolding. That may be
fine if the program is short and does not have loops, thus making the program’s unfolding
the program itself. However, if the program does contain a loop, the number of paths will
grow quickly and may be infinite.

There is a number of ways to deal with the path explosion problem, and we will overview
the mitigation strategies that we have used in this thesis. For a more comprehensive pre-
sentation, we refer the reader to the survey paper [54, section 5]

34

2.1.4.2.1 Pruning unreachable branches on-the-fly Once again, the naive symbolic
execution strategy will fork at every conditional jump, creating two new states: the “jumped”
state in which the jump’s condition is true and the jump is performed, and a “fall-through”
state, where the condition is false and the jump is skipped.

Recall now, that at these two states the path condition will be a conjunction of the
path condition at the parent (pre-jump) state and either the jump condition or its negation.
When symbolically executing the jump instruction, the engine can query a constraint solver
and check if the path conditions of the children states are satisfiable. If the solver reports
a path condition as unsatisfiable, then it is safe to say that the corresponding branch is
unreachable, i.e. there are no assignments of program variables that can lead the execution
into this branch.

"loop" cmpeq R1 255
goto_ct "end"
subsi R1 1
goto "loop"
"end" halt

R1 : n
255 : 0
IR : cmpeq R1 255

R1 : n - 1
255 : 0
IR : subsi R1 1

R1 : n - 1
255 : 0
IR : goto "loop"

R1 : n - 1
255 : 0
IR : cmpeq R1 255

R1 : n - 1
255 : 0
IR : goto_ct "end"

R1 : n - 1
255 : 0
IR : halt

R1 : n - 1
255 : 0
IR : goto_ct "end"

R1 : n
255 : 0
IR : goto_ct "end"

R1 : n
255 : 0
IR : goto_ct "end"

R1 : n
255 : 0
IR : halt

SAT: n = 0 SAT: n = 1

SAT: n = 1 UNSAT

line 1

line 1

line 2

line 5

line 2

line 3

line 4

line 2

line 5

line 2

Figure 2.6: Pruning of an unreachable branch

The figure 2.6 displays a simple program that decrements the contents of the register R1

is a loop. Initially, the registers R1 contains the symbolic variable n, which we constraint
with a precondition 0 ≤ n ≤ 1. The line 1 can be though of as a while-loop header,
which checks if the value of R1 is equal to the value in the memory cell 255 (containing the

35

concrete value 0). If R1 contains a non-zero value, the loop will be executed and the value
in R1 decremented. Every time the conditional jump instruction at line 1 is executed, the
symbolic execution engine queries the constraint solver to check the current path condition
for satisfiability. As the symbolic execution tree on the right-hand side shows, after one
iteration the path condition will become unsatisfiable, thus making all further loop iterations
unreachable. Relaxing the precondition on n can force the engine to explore more iterations
off the loop, but the same idea applies: there is no need to explore the potentially infinite
symbolic execution tree if some paths are guarded by unsatisfiable path conditions.

Pruning of unsatisfiable states has become one of the standard techniques to combat
the symbolic path explosion problem. Today, most symbolic execution frameworks such as
KLEE [62], EXE [63], PathFinder [64] and others employ off-the-shelf or custom constraint
solvers to prune unreachable paths.

In our work, pruning of paths is especially important, because we aim for completely
symbolic execution of programs, and therefore other techniques, such is concretisation, are
not applicable.

2.1.4.2.2 State merging Another, orthogonal way to mitigate path explosion is to iden-
tify similarities in certain execution states and merge them into one, thus reducing the
amount of states that need to be analysed. Symbolic state merging has been deeply re-
searched by Kuznetsov at al. [65] as a technique to speed up test generation and bug-finding.
Although state merging is a powerful technique, it needs to be used with great care, since it
causes the path conditions to grow significantly, and effectively movers the computational
load from the symbolic execution engine to the constraint solver.

We use state merging in the part of our symbolic execution framework that handles the
specification and verification of arithmetic expressions. Since these expressions only have a
finite number of execution paths, i.e. no loops, merging them into a single state transition
effectively allows us to create their symbolic summaries.

2.1.4.2.3 Loop summaries Loops and recursive function calls present, perhaps, the most
difficult challenge for traditional forward symbolic execution. As we noted before, symbolic
execution works by effectively unrolling the state transition of the program’s operational
semantics into a symbolic execution tree. If the transition system contains a loop, or a

36

recursive function call, guarded by a symbolic variable, then the unfolding depth becomes
bounded by the variable’s domain. Even though computers operate with finite machine
integers, for all intents and peruses such unfolding can be considered infinite, since it is
infeasible to explore them exhaustively.

However, often it is only necessary to explore the body of a symbolically guarded loop
once (or a small number of times) to generate a loop summary. A loop summary is a
collection of symbolic state transformers that alter the state of the variables the loop touches.
The ease of generating such summaries depends on the structure of the loop, i.e. is it nested
or not, and on how the variables are updates. In their work Godfefroid at al. [66] summarise
loops by detecting induction variables, i.e. the variables that are only changed by a constant
value on every iteration.

2.1.4.2.4 Incremental solving As the engine explores the symbolic execution tree, it
issues queries to the solver to check satisfiability of path conditions. Although it is possible
to spawn a fresh solver process for every query, it is wise to take advantage of the modern
SMT-solvers’ mechanisms to keep track of the previously solved constraints. Constraints
produced over the course of symbolic execution are often similar since every newly generated
constraint will share a prefix with the constraint associated to the parent node. The paper
[67] provides a comprehensive overview and benchmarks on using constraints caching and
incremental solving to speed up symbolic execution. In our work, we use the Z3 SMT solver’s
intrinsic capability to cache solutions of sub-formulas to speed-up constraint solving. An
interesting opportunity for future work would be to identify domain-specific constraints and
implement native caching for those in our system itself.

2.2 Functional Programming

Functional programming is a programming paradigm that models programs as functions,
in mathematics sense, i.e. as mapping from inputs to outputs. More formally, execution of
programs is represented as reduction of expressions, usually in some flavour of Church’s λ-
calculus [68]. Picking the exact flavour of λ-calculus to represent one’s functional programs
is no simple task. On the contrary, this question constitutes one of the major directions in

37

programming languages research.
In this thesis, we will use the programming language Haskell [69], which is based on

a typed λ-calculus, and puts special emphasis on careful handling of programs with side
effects.

This section presents, with examples in Haskell, the basic concepts of functional pro-
gramming which are necessary for understanding the contributions of this thesis. We do
not aim for a comprehensive introduction to functional programming in Haskell; rather, we
would like to provide the reader with a quick reference which they may use while reading
this thesis.

2.2.1 Pure functions, totality and side effects

The key concept of functional programming is the idea that all programs can be represented
as functions, i.e. mappings between types. For example, checking if a number is even could
be done with the following simple function:

isEven :: Integer -> Bool
isEven x = x % 2 == 0

This definition comprises two lines. The first line is called a type signature. This type
signature declares the type of the function named isEven to be a mapping from the type if
unbounded integers to booleans. The second line is an equation, which gives the function
its definition: to determine if the argument x is even or odd, the function must compare
the reminder of dividing x by 2 to 0. As we will see later, function definitions may comprise
several equations.

The function isEven is called pure, according to Haskell’s classification, because it be-
haves like a mathematical function, i.e. when given an argument, it always produces the
same value corresponding to that argument. Indeed, for every integer value the isEven

function will determine if the value is even or odd. This property is also sometimes re-
ferred as referential transparency [70]. However, we must point out here that even though
Haskell’s functions are indeed very much like mathematical functions, there is a caveat that
makes them different. Since Haskell is Turing-complete, there are valid Haskell programs
that never terminate. Every Haskell type has an implicit value ⊥ (pronounced “bottom”),

38

which represents an infinitely-looping program. Coincidentally, the presence of ⊥ prevents
Hask, the collection of all Haskell types, from being a category in the category-theoretic
sense. Speaking more formally, Haskell’s type system does not track totality of functions,
and consider functions to be pure even if they are not guaranteed to terminate. In other
words, non-termination is not a side effect in Haskell.

But what is then a side effect, and how functions with side effects are expressed in
Haskell?

The isEven function that we wrote earlier is in fact useless to us because we currently
do not know of a way to actually run it. Fortunately, Haskell provides primitives that allow
us to bridge our programs with the outside world:

isEvenTest :: IO Bool
isEvenTest = do
x <- readLn
return (isEven x)

Here, the isEvenTest function is an impure, or effectful, counterpart of the pure isEven
function. Its type signature declares that isEvenTest does not have any input arguments,
and its result is a boolean annotated with a special marker IO, which indicates that the
said boolean bears a mark of the input-output side effect. Indeed, the integer value to be
checked for evenness is requested from the user input via the readLn function, and then
supplied as an argument to the pure isEven function. In such a manner, Haskell provides
ways to clearly separate the code which deals with input-output from the “business logic”
of the program, which may remain pure for better maintainability.

2.2.2 Higher-order functions and recursion

In functional programming, functions can be operated over just the same as values of primi-
tive types such as numbers or characters. Functions can be stored in data structures, passed
to other functions as arguments and returned from other functions as results. Non-trivial
functional programs are written using higher-order functions — functions operating over
functions.

39

2.2.2.1 map — structure-preserving transformations of lists

For example, consider a function that traverses a linked-list and applies a function to its
every element:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f x

The type signature of map states that it receives two arguments: a function from type
a to type b, and a list of type a; as a result, it produces a list of type b. The function’s
definition comprises two equations: first, if the input list is empty, an empty list is returned.
Otherwise, the list should consist of a value x of type a (the head), and a possibly empty
list xs (the tail); then the definition in to apply the argument function f to the value x and
to append the resulting value of type b to the recursive call of the map function on the tail.

The map function is often used with anonymous functions as arguments, for example to
append a prefix to every character string in a list:

> map (\s -> "edited_" ++ s) ["photo1.jpg", "photo2.jpg", "photo3.jpg"]
["edited_photo1.jpg", "edited_photo2.jpg", "edited_photo3.jpg"]

Here, (\s -> "edited_" ++ s) is an anonymous function, or lambda-expression, that
is applied to every element of the list. Anonymous functions provide a way to quickly define
short functions right at use-sites, avoiding the burden of naming them and overpopulating
the module’s name space.

Note that the type of the map function does not refer to concrete types, but rather is
abstracted over type variables a and b. We say that map is parametrically polymorphic, i.e.
its arguments are type parameters, rather than concrete types. parametric polymorphism
is a form of generic programming.

2.2.2.2 foldr — computing summaries of lists

The map function provides a way to apply a function to every element of a linked list,
independently. In fact, there is no way map can be used to consider, say, previous elements
while modifying the current one. To perform more general operations with lists, another
higher-order function is used:

40

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

The function foldr (often called “right fold”) provides a way to compute a “summary”
of a list using a function f that combines an argument of type a (the type of the list’s
elements) and the so-far accumulated summary of type b. The result of right-folding an
empty list is equal to the initial summary of type b, provided as the second argument. If
the list is not empty, the result will be the combination of x, the head of the list, and the
recursive call which produces the summary of the tail xs.

For example, the sum of a list of integers can be calculated using foldr in the following
way:

sum :: [Integer] -> Integer
sum xs = foldr (+) 0 xs

Here, the foldr function is provided with the addition as the way to compute the
summary, and with 0 as the initial summary.

The result of folding a list does not have to be a primitive type, but it can also be another
list. For example, the map higher-order function can be implemented via foldr:

mapViaFoldr :: (a -> b) -> [a] -> [b]
mapViaFoldr f = foldr (\x summary -> f x : summary) []

If we look at the definition of mapViaFoldr carefully, we can see two facts:

1. It is not recursive,

2. It resembles the recursive definition of map we saw earlier.

These two facts are consequences of a deep insight. In fact, as pointed out by Hutton [71],
foldr captures a simple pattern of recursion for processing list. In his paper, Hutton
explores the limits of expressiveness of foldr in a lazy functional language with tuples and
first-class functions (Haskell matches these requirements), and describes how foldr can
be used to systematically construct functional programs and proofs about them. In the
next section, we will revisit the definition of foldr to see that it is a generic structural
transformation that is guided by the shape of the list algebraic data type.

41

2.2.3 Algebraic data types

As we have seen, the key concept of functional programming is to think about functions as
first-class values, manipulate them freely and combine them in various ways. However, typed
functional programming languages, and Haskell in particular, are putting emphasis not only
on functions, but on data types the functions operate with. The concept of algebraic data
types (ADTs) is in fact the one that makes Haskell the language I, personally, and many
researchers and software developers love so much.

According to the History of Haskell [72], the concept of algebraic data types as we
know it today has been first introduced in the Hope programming language [70]. Algebraic
data types were subsequently introduced into Haskell and constitute one of its fundamental
features up to this day.

In this section, we present algebraic data types, and outline their role in structuring
functional programs.

2.2.3.1 Why “algebraic”

As we will see in this section, there are two kinds of algebraic data types: sum-types, which
roughly correspond to enumerations in imperative programming languages, and product-
types, which correspond to records or structures. Data types can be freely combined using
these sum and product operations to form new data types, and that intuition motivates the
name “algebraic”.

2.2.3.2 Sum types

First, let us consider an example:

data Bool = True | False

The Bool data type is a sum-type of two possible values, True and False, called data
constructors, while the Bool itself is called a type constructor. A value of type Bool is
either True of False, but never both.

Typed functional programming languages, including Haskell, have a mechanism of pattern-
matching for algebraic data types, which provides a way to break them down into their data

42

constructors. Earlier in this chapter we were defining higher-order functions with equations,
where in fact every equation was an analysis case describing what to do with every data con-
structor of the argument type. For Bool, we can use pattern-matching to define conjunction,
i.e. the logical “and” operation:

and :: Bool -> Bool -> Bool
and False _ = False
and True x = x

Here we perform pattern-matching on the first argument to analyse its value. If it is
False, we are free to ignore the value of the second argument since the result of the function
will be False anyway. We do so by specifying the _ (pronounced “wildcard”) pattern for the
second argument, effectively saying that we do not care what it is. Now, the first argument
can only take one other value, the data constructor True, in which case the result of the
and function will be equal to whatever the second argument is.

In general, a sum-type is a type constructor, possibly with type arguments, and an
enumeration of disjoint data constructors that may value arguments. For example, another
ubiquitous data type is:

data Maybe a = Just a | Nothing

The Maybe data type has a type-variable argument that may be instantiated with any
algebraic data type. The data constructor Just represents the presence of a value, and
Nothing represents its absence. Maybe is often used as a result of a function that may fail
to produce a value, but the reason of failure is of no interest.

When the reason of failure, like in most cases, is important, another type is often used:

data Either a b = Left a | Right b

The Either data type has two type-variable arguments, and its Left data constructor
is conventionally used to represent the failed result of a computation, while the Right

data constructor is used to represent success. Either is used in Haskell for implementing
functions with exceptions, with its first type parameter instantiated with a domain-specific
exception data type.

43

Sum types roughly correspond to set-theoretic disjoint union. The types corresponding
to set-theoretic Cartesian product are called product types and are considered in the next
section.

2.2.3.3 Product types

In imperative programming languages, records, or structures, serve the purpose of “bunch-
ing” several types into one. In typed functional programming, this role is fulfilled by product
types. For example, values could be paired together:

data Pair a b = Pair a b

The Pair type has a type constructor with two type-variable arguments, and a single
data constructor with the same name which holds values of both types. In general, product
types will always have a single data constructor with multiple arguments. Haskell has built-
in syntactic support for tuples, a generalisation of pairs to more than two types, which
correspond to the set-theoretic notion of Cartesian product, thus giving the name to product
types in general.

Moreover, Haskell provides syntactic support for record types, a special case of product
types which also have accessor-functions for the fields:

data Person = Person { name :: String
, age :: Integer }

This syntax creates a product type Person with two fields of types String and Integer,
and also two functions of types Person -> String and Person -> Integer, which provide
access to the fields.

2.2.3.4 Recursive types

The conventional data structures such as linked lists and trees are expressed in Haskell with
recursive algebraic data types. For example, consider a type for lists:

data List a = Nil | Cons a (List a)

A List is either an empty list, or a pair of a value of type a, the head, and a list,
the tail. The Haskell base library defines a similar type which we have already used in

44

the examples above, with the conventional higher-order functions such as map and foldr.
However, nothing stops us from implementing these functions for our own list data type:

mapList :: (a -> b) -> List a -> List b
mapList f Nil = Nil
mapList f (Cons x xs) = Cons (f x) (mapList f xs)

The map implementation in section 2.2.2, which closely mirrors the implementation in
base, features the Haskell’s special syntactic support for the built-in list type []. Our
own mapList function, however, must use the data constructors of the List data type. The
built-in list data type also provide support for list comprehensions, another special language
construction that provides a set-theoretic-like syntax for manipulating lists:

> [(i,j) | i <- [1,2],
j <- [3,4]]

[(1,3),(1,4),(2,3),(2,4)]

The code in the snippet uses a list comprehension to generate the Cartesian product of
sets {1, 2} and {3, 4}, represented as lists. It turns out, that lists are a special instance of
a more general notion of a monad which we will introduce later in this chapter.

2.2.3.5 newtype — introducing a type isomorphic to an existing one

The Haskell programming language provides a construction that allows to define wrap an
existing type into a zero-cost envelope. The language standard requires all implementa-
tions to guarantee that this wrapper type, called a newtype, will have the same runtime
representation that the wrapped type. Newtypes are especially useful when the type class
mechanism comes into play. In short, declaring a newtype allows to redefine type class
instances which govern the behaviour of many standard Hasskell functions. We will discuss
this techniques when covering Haskell type classes in section 2.2.4.

The Haskell programming language provides a much larger set of features related to
algebraic data types that we have presented in this section. The further sections will touch
over a number of more, but we still not aiming for an exhaustive presentation.

45

2.2.4 Type classes

Type classes enrich the Haskell programming language with ad-hoc polymorphism, provid-
ing a way to abstract over a set of operations. They are somewhat similar to interfaces from
object-oriented programming, but have a number of important distinctions. Type classes
are regarded as one of Haskell’s most distinctive characteristic [72], and were consecutively
added in a number of other functional programming languages.

As noted in History of Haskell [72], type classes have been designed to solve the problem
of overloading of numeric operations and equality. In today’s Haskell, type classes are
ubiquitous, and solve not only this problem, but many more: from serialisation of data
types into strings to abstracting over collection types, to providing a uniform interface for
effectful computations.

We now introduce a number of standard type classes, discuss functional programming
techniques that employ type classes and then outline important features of the type class
mechanism as implemented in Glasgow Haskell Compiler (GHC).

2.2.4.1 The Eq class — equality

A class declaration in Haskell specifies the name of the class, with optional type variable
arguments, and the type signatures for the classe’s methods. Type classes can be instanti-
ated at concrete types with an instance declaration. Consider the equality type class and
its instance for the primitive Int type:

class Eq a where
(==), (/=) :: a -> a -> Bool

instance Eq Int where
i1 == i2 = eqInt i1 i2
i1 /= i2 = not (i1 == i2)

Here, the Eq type class which abstracts equality has a single parameter a and two
methods with the same type signature. The instance specialises the type variable a to the
concrete type Int and defines implementations of the classe’s methods by referring to the
built-in function that implements equality for Int.

In GHC [73], the de-facto standard implementation of Haskell, many type classes, in-
cluding Eq, can be derived automatically for user-defined algebraic data types, right at the

46

point of declaration of the type.

2.2.4.2 The Ord class — total order

Another ubiquitous type class is the Ord class, which abstracts over types with have a total
order relation defined on them.

class Eq a => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> a

data Ordering = LT | EQ | GT

The Ord type class inherits the methods of the Eq class, i.e. a totally ordered data
type is required to have equality. The compare function demonstrates an important pattern
of typed functional programming. While in a language like C a comparison function would
return an integer and implicitly assign the sign of the integer to the result of the comparison,
in Haskell it is customary to create custom data types with more explicit dedication. The
Ordering data type’s dedication is to serve as a return type of compare. This pattern is
an instance of type-driven development, and is very useful to enforce program correctness
through clear type-defined interfaces.

2.2.4.3 Defining custom type classes

Haskell allows users to define their own typeclasses and to declare types as their instances.
Conceptually, there is no real difference between standard and user-defined type classes.
Even though for standard type classes the GHC compiler provides build-in instance deriva-
tion mechanism, there are ways to use GHC’s generic programming mechanisms for user-
defined type-classes too [74][75].

For example, consider a type class that provides an interface for boolean algebra:

class Boolean a where
true, false :: a
false = not true

not :: a -> a

(|||), (&&&) :: a -> a -> a

47

toBool :: a -> Bool
fromBool :: Bool -> a

The Boolean type class is an instance of another pattern often found in Haskell programs,
a shallowly-embedded (as opposed to deeply-embedded) syntax, in this case of boolean alge-
bra. This embedding is called shallow because it reuses constructions of the metalanguage
(here, Haskell)1. Specifically, this embedding does not have its own binders, and reuses
Haskell’s let-bindings and variables.

A natural instance of the Boolean type class is the Bool type:

instance Boolean Bool where
true = True
not = Prelude.not
toBool = id
fromBool = id

x ||| y = x || y
x &&& y = x && y

Here we reuse the standard functions defined in GHC’s base package. Note that we do
not have to define false explicitly since we have declared a default implementation for it
as not true. The functions that defined the isomorphism to Bool are, naturally, identities.

A much more interesting instance of the Boolean type class will be declared in chapter 5
when discussing symbolic execution. It turns out to be useful to treat concrete boolean
values and symbolic boolean expressions uniformly, and the Boolean type class gives a way
to do that.

2.2.5 Programs with side-effects

In this section we will overview the Haskell’s approach and machinery for writing impure
functions, that is, functions that have side effects.

2.2.5.1 Revisiting IO

The Haskell programming language’s type system distinguishes between pure and effect-
ful computations. Originally, the “effectful” term referred specifically to input/output, i.e.

1Embedding of syntax is one of the cornerstones of programming languages research. See, for example [76] for
more information and references.

48

interaction with the operating system to read and modify files. The initial Haskell program-
ming language design, as presented in the Haskell 1.0 Report, presented two mechanisms
for I/O, based on streams and continuations. Even though both fit well the purity require-
ment, they had their own disadvantages which spurred the research into better approaches
to integrating I/O into a pure functional language. Motivated by Moggi’s research on pro-
gramming language semantics [58], which suggested using the category theoretic notion of
monad to give denotational semantics to effectful computations, Wadler has introduced
monads into Haskell to handle I/O and other effects [59]. The History of Haskell paper [72]
describes this historical design decision: “Wadler used monads to express the same program-
ming language features that Moggi used monads to describe”. Using monads to structure
functional programs with I/O, and side-effects in general, has proved to be a very expressive
and convenient approach.

Since the days when monads were introduced into Haskell, many new ways to structure
computations with effects have been developed. Today’s Haskell has a hierarchy of inter-
faces for effectful computations with monads situated on top as the most restrictive one.
We proceed by introducing several of these interfaces, formulated as Haskell type classes,
starting from the most basic one, and building up the hierarchy up to selective functors and
monads.

2.2.5.2 The Functor Class — independent effects

One way to organise Haskell’s effectful computation type class hierarchy is by considering
the dependencies between the computation’s effects. Informally, two effects are considered
independent if one cannot control execution of the other, i.e. cannot stop, force or in any
other way affect its execution.

The base of the hierarchy lies at the Functor type class, which represents computations
that can be “mapped over”, i.e. have an action performed over their value without altering
the structure of the computation.

class Functor f where
fmap :: (a -> b) -> f a -> f b

The best way to understand an abstraction is to develop an intuition through looking
at concrete examples of types that can be given an instance of Functor. For example, the

49

List algebraic data type, which we introduced in section 2.2.3.4, is a functor:

instance Functor List where
fmap = mapList

Indeed, the function mapList “maps over” a list, applying its argument function to every
element of the list. The intuition of functors being computations with an effect applies to
the list functor too: list represent non-deterministic computations with multiple possible
results, and the fmap function applies its argument to every result.

As we noted in section 2.2.4, it is conventional to formulate laws that the instances of a
specific type class must obey. In Haskell, that is indeed a convention, since the type system
is not powerful enough to check, enforce or even encode their validity for instances. However,
it is considered a good practice to check laws either by hand, or using property-based testing
frameworks such as QuickCheck [21]. Other, more powerful type systems, such as the ones
of proof assistants like Coq and Agda, can be used to formalise type classes together with
their laws and enable formal proof of compliance for instances.

The laws of the Functor type class are motivated by its origin in category theory. Cat-
egorically, a functor is a structure-preserving transformation between two categories. Func-
tors are only allowed to change the objects of the category, but must preserve the structure
of the morphisms: identities and composition. These laws can be written down as the
following two equations:

fmap id = id (2.1)

∀ (a b : Type)(g : a→ b)(f : b→ c). fmap (f ◦ g) = fmap f ◦ fmap g (2.2)

Here id is the identity morphism which, in Haskell, is represented by the function
id :: a -> a. When the fmap function is given the identity function as an argument,
it will map it into the identity function too. The second law says that composing func-
tions in the source category and then applying the functor results in the target category
composition of transformed functions.

When talking about functors in Haskell, we usually consider endofunctors — functors
that have the same source and target category, Hask, the category of Haskell types and

50

total Haskell functions. For the purposes of presentation, we forget that every Haskell type
implicitly contains the value ⊥, which prevents the collection of all Haskell types form being
a category.

Let us now prove the List type constructor is an endofunctor. We will have to apply
the axiom of functional extensionality to transform the equality of functions into pointwise
equality.

Proposition 1. The List type constructor preserves the identity morphism, i.e. the equa-
tion 2.1 holds.

Proof. We prove the proposition by induction on the structure of the List algebraic data
type. We first consider the base case of the Nil data constructor:

fmap id Nil

= { Functor instance for List }

mapList id Nil

= { definition of mapList }

id Nil

= { definition of id }

Nil

We now consider the inductive case of the Cons data constructor:

51

fmap id (Cons y ys)

= { Functor instance for List }

mapList id (Cons y ys))

= { definition of mapList }

Cons (id y) (mapList id ys))

= { definition of id }

Cons y (mapList id ys))

= { inductive hypothesis }

Cons y ys

Similarly, the proposition about the List type constructor preserving composition (equa-
tion 2.2) can be formulated and proved.

Most Haskell data types can be given a Functor instance, including the ones we have
discussed earlier in this chapter. However, the functor interface is very limited: it only
provides a way to transform the resulting value of an effectful computation.

2.2.5.3 The Applicative class — statically defined effects

Applicative functors extend the functor class interface with additional methods and laws.
Their purpose is to provide a mechanism to lift a pure function of multiple arguments to
an effectful computational context and apply it, hence the name. Applicative functors have
been discovered by McBride and Paterson [77], and since then have become an important
abstraction for effectful computations in Haskell and other languages.

class Functor f => Applicative f where
-- | Lift a value.
pure :: a -> f a
-- | Lift a binary function to actions.
liftA2 :: (a -> b -> c) -> f a -> f b -> f c

52

-- | Sequential application.
(<*>) :: f (a -> b) -> f a -> f b

Let us consider the Applicative instance for the Haskell’s datatype of linked-lists:

instance Applicative [] where
pure x = [x]
liftA2 f xs ys = [f x y | x <- xs, y <- ys]
fs <*> xs = [f x | f <- fs, x <- xs]

We see that the pure function is just a singleton list — it embeds a value into the list
computational context. The liftA2 function lifts a binary function onto lists. Using a list
comprehension it picks non-deterministically a value from each list and applies the function
to them, effectively generating a list of all possible combinations. One can implement the
Cartesian product of two lists via liftA2 by lifting the pair constructor onto lists:

> liftA2 (\x y -> (x,y)) [1,2] [3,4]
[(1,3),(1,4),(2,3),(2,4)]

The apply operator <*> can be considered a generalisation of liftA2. It takes two
effectful computations, which — independently — compute values of types a -> b and
a, and returns their composition that performs both computations, and then applies the
obtained function to the obtained value producing the result of type b. Crucially, both
arguments and associated effects are known statically, which, for example, allows us to
pre-allocate all necessary computation resources upfront and execute all computations in
parallel. This operator is often used to lift n-ary functions.

Applicative functors provide an interface for composing independent effectful computa-
tions. However, the effects can only be executed together — without any dynamic conditions.
One may wonder, if it is possible to retain the benefits of applicatives, while also gaining
the possibility to skip some effects depending on runtime conditions.

2.2.5.4 Selective class — statically defined, dynamically dispatched effects

The research on ISA semantics summarised in this thesis has inspired a very interesting
abstraction, which we call Selective applicative functors [16], or just selective functors, for
brevity. The basic idea of selective functors is enriching the Applicative interface with an

53

operator that allows conditional execution of effects. We say that selective functors allow
declaring effects statically, and choosing which to execute dynamically. In this section,
we give a brief introduction to selective functors. For a more in-depth presentation, the
interested reader may consult our paper [16].

Like applicative functors [77], selective functors provide a way to embed pure values into
an effectful context f using the function pure, and give meaning to composition of two
independent effectful computations using the operator <*>. Selective functors enrich the
applicative interface with the select function, which gives meaning to the composition of
two effectful computations, where, in contrast to <*>, the second computation depends on
the first one:
class Applicative f => Selective f where

select :: f (Either a b) -> f (a -> b) -> f b

One can think of select as a selective function application: parametricity [78] dictates that,
when given a Left a, we must execute the effects in f (a -> b), apply the obtained function
to a, and return the resulting b; on the other hand, when given a Right b, we may skip the
effects associated with the function, and return the given b2.

Following the notational convention for applicative operators, we also define the infix
operator alias <*? for select: the angle bracket pointing to the left means we always use
the corresponding value; the value on the right, however, may be skipped, hence the question
mark.

One can implement select using monads in a straightforward manner: examine the
value produced by f (Either a b) with the bind operator, and then, in the Left a case,
execute the subsequent effect f (a -> b), passing the a to it using the Functor’s map
operator, as shown below.

selectM :: Monad f => f (Either a b) -> f (a -> b) -> f b
selectM x y = x >>= \e -> case e of Left a -> ($a) <$> y -- Execute y

Right b -> pure b -- Skip y

One can also implement a function with the type signature of select using applica-
tive functors, but it will always execute the effects associated with the second argument,
rendering any conditional execution of effects impossible:

2Note, however, that if f a holds no values of type a, i.e. a is a phantom type variable [79], then the effects in
f (a -> b) can be skipped unconditionally.

54

selectA :: Applicative f => f (Either a b) -> f (a -> b) -> f b
selectA x y = (\e f -> either f id e) <$> x <*> y -- Execute x and y

While selectM is useful for conditional execution of effects, selectA is useful for static
analysis. As we will see in §2.2.5.4.2, selective functors used for static analysis need to
collect information about all possible effects instead of skipping some of them, hence they
directly use select = selectA in their Selective instance definitions.

Any Applicative instance can thus be given a Selective instance. The opposite is
also true in the sense that one can recover the operator <*> from select as follows:

apS :: Selective f => f (a -> b) -> f a -> f b
apS f x = select (Left <$> f) (flip ($) <$> x)

Here we tag a given function a -> b with Left and turn a value of type a into the reverse
application function \a f -> f a, which yields b when given a -> b, as desired. Since the
Right case is impossible, the effect f a is executed unconditionally. Note however, that
the equality (<*>) = apS does not always hold. Selective functors that satisfy the law
(<*>) = apS will be called rigid.

It is worth emphasising that the subclass relationships Applicative f => Selective f

and Applicative f => Monad f are different. Some applicative functors are not monads,
e.g. the Const functor, but every applicative functor is also a selective functor, as witnessed
by the function selectA. The subclass relationship Applicative f => Selective f is
justified only by the extra method select in Selective. While select = selectA is a
valid implementation of select, it is not the only useful implementation. The applicative-
selective-monad hierarchy therefore reflects method set inclusion: {<*>} ⊂ {<*>, select} ⊂

{<*>, select, >>=}.
Table 2.3 compares the three methods in terms their expressive power.

2.2.5.4.1 Selective combinators In the fine-grained semantics of the REDFIN ISA, which
will be described in chapter 5, we actively use selective functors, but, in fact, we never use
the select function directly. Instead, we find that the semantics of some instructions, such
as conditional jumps, can be naturally expressed with combinators derived from select.

55

Notions that can be expressed using an operator apply (<*>) select (<*?) bind (>>=)
Independent effects and parallelism ✓
Static visibility and analysis of effects ✓ ✓
Speculative execution of effects ✓
Conditional execution of effects ✓ ✓
Arbitrary dynamic effects ✓

Table 2.3: Comparison of apply, select and bind operators in terms of their expressive power. Note
that each operator has one unique ability that the two others lack.

Consider the implementation of whenS, which executes an effectful computation (for exam-
ple, updates the instruction counter) depending on a boolean value:

whenS :: Selective f => f Bool -> f () -> f ()
whenS x y = selector <*? effect

where
selector = bool (Right ()) (Left ()) <$> x -- NB: convert True to Left ()
effect = const <$> y

We first bring the given effectful computations into the right shape by using the Functor’s
map operator. Specifically, x :: f Bool is converted into the selector :: f (Either () ()),
and y :: f () is converted into the effect :: f (() -> ()). The results are composed using
the select operator <*?, and the meaning of this composition is determined by the supplied
Selective f instance. For example, an instance like f = IO would skip y if x yields False.

It is worth noting that unlike the select operator, whose implementation is almost com-
pletely determined by parametricity (i.e., the only real question is: “To skip, or not to
skip?”), whenS admits a variety of (incorrect) implementations. In particular, due to Boolean
blindness3, it is easy to inadvertently implement unlessS, which has the same type but flips
the meaning of the Boolean value. The ability to reason parametrically was one of the guid-
ing principles we used when looking for a good abstraction for selective functors: select

provides this ability, whereas whenS does not.
A strong contender for playing the leading role in selective functors is the function

branch that, given an effectful computation x :: f (Either a b), selects which subsequent
computation, namely l :: f (a -> c) or r :: f (b -> c), to execute:

branch :: Selective f => f (Either a b) -> f (a -> c) -> f (b -> c) -> f c
branch x l r = fmap (fmap Left) x <*? fmap (fmap Right) l <*? r

3The term refers to the fact that the True and False values are not distinguished at the type level, see [80].

56

The select operator allows to eliminate one of the cases in a sum type, namely the Left a

case in Either a b, leaving the other case intact. To implement branch, we will need
to apply <*? twice, eliminating a and b one after another. The first application is tricky
because f (Either a b) and f (a -> c) do not match the type signature of <*?. To fix
the mismatch, we convert them to f (Either a (Either b c)) and f (a -> Either b c),
respectively. The second application of <*? is then straightforward.

By instantiating select with a = b = () we have earlier obtained whenS. Below we
repeat the same trick but with branch, obtaining another familiar conditional combinator
ifS:

ifS :: Selective f => f Bool -> f a -> f a -> f a
ifS x t e = branch selector (const <$> t) (const <$> e)

where
selector = bool (Right ()) (Left ()) <$> x -- NB: convert True to Left ()

Many conditional combinators, which are typically associated with the Monad type class,
can be expressed using selective functors. To emphasise the monadic flavour of selective
functors, we can use ifS to implement the bind operator specialised to Bool:

bindBool :: Selective f => f Bool -> (Bool -> f a) -> f a
bindBool x f = ifS x (f False) (f True)

2.2.5.4.2 Examples of selective functors Having explored various useful combinators
that can be implemented on top of the minimalistic selective interface, in this section we
look at several examples of selective functors.

The Const m a functor is an interesting instance of the Applicative type class, which
stores no values of type a, but keeps track of the applicative structure in the monoid value
of type m:

newtype Const m a = Const { getConst :: m }

instance Functor (Const m) where
fmap _ (Const x) = Const x

-- 'mempty' and '<>' are the identity and the binary operation of the Monoid m
instance Monoid m => Applicative (Const m) where

pure _ = Const mempty -- Pure values have no effects
Const x <*> Const y = Const (x <> y) -- Collect effects in x and y

57

It turns out there are two useful selective instances for Const. To disambiguate between
them, we will call them Over and Under, reusing4 the above Functor and Applicative

instances:

newtype Over m a = Over { getOver :: m }
newtype Under m a = Under { getUnder :: m }

instance Monoid m => Selective (Over m) where
select (Over x) (Over y) = Over (x <> y) -- Collect effects in x and y

instance Monoid m => Selective (Under m) where
select (Under x) _ = Under x -- Discard conditional effects

The selective functor Over can be used for computing a list of all possible effects embedded
in a computation, i.e. an over-approximation of the effects that will actually occur. This
is achieved by keeping track of effects in both arguments of select. The selective functor
Under, on the other hand, discards the second argument of select, and therefore computes
an under-approximation, i.e. a list of effects that are guaranteed to occur. Let us give these
two instances a try:

λ> ifS (Over "a") (Over "b") (Over "c") *> Over "d" *> whenS (Over "e") (Over "f")
Over "abcdef"

λ> ifS (Under "a") (Under "b") (Under "c") *> Under "d" *> whenS (Under "e") (Under "f")
Under "ade"

As expected, Over collects all effects, whereas Under does not look beyond “opaque” con-
ditions. A deeper difference between them is that Over is a rigid selective functor, i.e.
(<*>) = apS, but Under is not: indeed, Under "a" <*> Under "b" records both "a" and
"b", but apS (Under "a") (Under "b") records just "a" since apS is implemented via
select. Intuitively, non-rigid selective functors have a much richer structure, because <*>

is not expressible via select.
At that point, we conclude the presentation of selective functors. We refer the interesting

reader to our paper [16], which provides more details on selective functors themselves and
on their applications beyond ISA semantics.

4Fortunately, thanks to the new GHC extension DerivingVia [81], we can reuse Const instances without duplicating
any code, simply by adding deriving (Functor, Applicative) via (Const m) to the newtype definitions.

58

2.2.5.5 The Monad class — fully dynamic effects

Monads, introduced to functional programming by Wadler [82], are a powerful and general
approach for describing effectful (or impure) computations using pure functions. The key
ingredient of the monad abstraction is the bind operator, denoted by >>= in Haskell:

(>>=) :: Monad f => f a -> (a -> f b) -> f b

The operator takes two arguments: an effectful computation f a, which yields a value of
type a when executed, and a recipe, i.e. a pure function of type a -> f b, for turning a into
a subsequent computation of type f b. This approach to composing effectful computations
is inherently sequential: until we execute the effects in f a, there is no way of obtaining the
computation f b, i.e. these computations can only be performed in sequence.

The monadic interface can be naturally used to describe ISA semantics. In chapter 4,
we will develop a coarse-grained semantics of the REDFIN ISA based on monadic state-
transformers. As we will see, the semantics will syntactically look very natural, mirroring
the pseudocode samples usually found in ISA manuals, while also being executable. However,
as we will see, the semantics will have a number of shortcomings, which we will mitigate by
developing a novel approach, based on selective functors, in chapter 5.

59

Chapter 3

Instruction-set architecture

semantics

In section 2.1.3.1, we have outlined the major approaches for describing the semantics of
programming languages. These approaches constitute the theory of programming languages.
In this thesis, however, we are more concerned with practice: how can these theoretical ap-
proaches be put to use by software and computer engineers to make programs, programming
languages and computer architectures better?

The theoretical approaches to semantics are employed in practice to structure the imple-
mentations of interpreters and compilers. There is a wide variety of techniques of program-
ming language implementation, ranging in abstraction from high-level semantic frameworks
such as Ott [83], Lem [84], K [85] and others, to concrete implementations using another
programming language as a metalanguage. The latter group has an important subspace
of EDSLs — domain-specific languages embedded into the metalanguage and thus reusing
its syntax and semantics. In this thesis, we present approaches for describing semantics
of instruction-set architectures as EDSLs embedded in Haskell, and taking advantage of
Haskell’s powerful type system. As a case-study, we apply the presented approaches to
REDFIN.

60

3.1 Instruction syntax

In this section, we consider the data types and techniques used to represent REDFIN’s
instructions. The section 1.3 describes the motivation for the design of REDFIN, and
outlines the classes of instructions that the ISA provides. In this thesis, and the associated
verification frameworks, we do not consider all REDFIN instructions. We leave out the
bus access instructions and fixed-point arithmetic. The former lies outside of the scope of
this thesis1, and the latter can be handled similarly to their integer analogues, and are not
required for the verification case-studies.

The representation, and even the very concept, of the instruction syntax is one of the
major influences of the programming languages techniques in this thesis. If this thesis was
written from a purely computer engineering perspective, we would not have such a section,
but rather just a diagram of the binary instruction codes. However, since we are at the
edge of programming languages and computer engineering, we will have both the machine
codes diagram and a generalised algebraic data type of instructions’ abstract syntax. We
first take a look at the machine codes.

3.1.1 Concrete syntax: instruction codes

15 10 9 8 7 0
TYPE A 0 0 0 0 0 0 -
TYPE B 0 X X X X X REG2 MEM8
TYPE C 1 0 0 X X X REG2 SIMM8
TYPE D 1 0 1 0 X X REG2 SIMM8
TYPE E 1 0 1 1 X X REG2 UIMM8
TYPE F 1 1 0 X X X UIMM10/SIMM10
TYPE G 1 1 1 0 X X REG2 -
TYPE H 1 1 1 1 1 1 UIMM5 UIMM5

Table 3.1: REDFIN ISA machine code formats

The table 3.1 is an excerpt from REDFIN ISA manual, and contains the types of instruction
codes REDFIN supports. Every code is a 16-bit word, where the 6 most significant bits
correspond to the opcode, and the rest encodes the instruction’s arguments. The symbols
“X” in the table can take either 0 or 1. “REG2” is a 2-bit register code, “MEM8” is a data
memory address, and the “*IMM*” mnemonics are immediate arguments of various widths.

1Modelling the system bus is a promising avenue of future work, see section 7.3.1.

61

After this table, the REDFIN ISA manual enumerates every instruction code and de-
scribes its semantics in prose and pseudo code. However, such bare-bones representation of
instruction syntax is not convenient for the purposes of building a verification framework.
We therefore present a representation of instruction syntax augmented with additional in-
formation about the structure of instructions’ data dependencies.

3.1.2 Abstract syntax

An important categorisation criterion that constitutes the corner stone of our semantics of
the REDFIN ISA is the structure of the instructions’ data dependencies. Most instructions
have static dataflow: they read and write data locations, and do so consistently, indepen-
dently of the data contents of these locations. Other instructions have their dataflow defined
by the contents of the locations they read: based on it they may write into different locations.
For example, the equality comparison instruction will set the Condition flag if the values
in its argument locations are equal. In their turn, the conditional jump instructions will
change the instruction counter based in the value of the Condition flag. This dichotomy
of static versus dynamic dataflow can be captured by assigning the instructions with the
correct dataflow type class. Instruction with static data flow belong to either Functor or
Applicative, and the dynamic dataflow can we expressed with Selective or Monad. We
will discuss the dataflow classes in more detail further.

We represent the instructions as a generalised algebraic data type (figure 3.1), with
individual instructions being its constructors. This type includes a type-level value which
represents the class of the dataflow effects of instructions. We will talk about the classes in
more detail when formulating the semantics of instructions in the next section.

62

data InstructionImpl
(control :: (Type -> Type) -> Constraint) (value :: Type -> Constraint) a
where
Load :: Register -> CAddress -> InstructionImpl Functor value a
Set :: value a => Register -> Imm a -> InstructionImpl Functor value a
Store :: Register -> CAddress -> InstructionImpl Functor value a
Halt :: InstructionImpl Applicative value a
Add :: Register -> CAddress -> InstructionImpl Applicative value a
AddI :: value a => Register -> Imm a -> InstructionImpl Applicative value a
Sub :: Register -> CAddress -> InstructionImpl Applicative value a
SubI :: value a => Register -> Imm a -> InstructionImpl Applicative value a
Mul :: Register -> CAddress -> InstructionImpl Applicative value a
Div :: Register -> CAddress -> InstructionImpl Applicative value a
Mod :: Register -> CAddress -> InstructionImpl Applicative value a
Abs :: Register -> InstructionImpl Applicative value a
Jump :: value a => Imm a -> InstructionImpl Applicative value a
CmpEq :: Register -> CAddress -> InstructionImpl Selective value a
CmpGt :: Register -> CAddress -> InstructionImpl Selective value a
CmpLt :: Register -> CAddress -> InstructionImpl Selective value a
JumpCt :: value a => Imm a -> InstructionImpl Selective value a
JumpCf :: value a => Imm a -> InstructionImpl Selective value a
LoadMI :: Register -> CAddress -> InstructionImpl Monad value a

data Instruction a = forall c v. v a => Instruction (InstructionImpl c v a)
Figure 3.1: Instruction syntax

3.2 ISA state

To create an executable model of REDFIN, we should formulate the components of the
instruction-set architecture as a collection of algebraic data types. These data types will
represent the possible states of the ISA, and the semantics of the instruction will describe
transitions between the states.

3.2.1 Data types

The REDFIN ISA has six types of data locations, represented by the six data constructors
of the Key data type (figure 3.2):

• Reg is a general-purpose registers of REDFIN;

• Addr represents a potentially symbolic memory location;

• F refers to a field of the flag register;

63

• IC is the instruction counter — during program execution it contains the address of
the next instruction to be fetched from program memory;

• IR is the instruction register — during program execution it contains the binary in-
struction code of the fetched instruction;

• Prog is an address in program memory.

The constructors of the Key data type are essentially just tags, which enclose the values
of the data types on the right-hand-side of the figure 3.2. The Key data type will be
essential for the construction of fine-grained store abstraction which we will use to describe
the semantics of instructions.

Note that the REDFIN ISA has separate memory regions for data and instructions.
We, however, model them similarly and reuse the data type of addresses, even though the
program addresses will never be accessed symbolically.

data Key where
-- | data register
Reg :: Register -> Key
-- | memory cell
Addr :: Address -> Key
-- | flag, a special boolean register
F :: Flag -> Key
-- | instruction counter
IC :: Key
-- | instruction register
IR :: Key
-- | program address
Prog :: Address -> Key

-- | Registers
data Register = R0 | R1 | R2 | R3

-- | Concrete memory address
newtype CAddress = CAddress Word8

-- | Immediate argument
newtype Imm a = Imm a

-- | Flags
data Flag

= Halted
| Condition
| Overflow
| DivisionByZero

-- | Binary instruction code
newtype InstructionCode =

InstructionCode Word16

Figure 3.2: REDFIN ISA keys

The data type of keys in figure 3.2 account for potentially symbolic memory addresses, but
we have not yet introduced how they are represented. Symbolic values will become relevant
in the next chapter, which will describe verification of REDFIN programs by symbolic
execution.

64

3.3 Instruction semantics

Informally, the semantics of an instruction is a sequence of steps that change the state of
the ISA. Every instruction will alter relevant parts of the state: registers, memory or flags.
Before executing an instruction, the processor will perform a fetch-decode-execute process,
which includes fetching an instruction code from program memory into the instruction
register, decoding the instruction into a value of the abstract syntax data type, and then
executing its semantics and advancing the instruction counter. This means that we do not
include the fetch-decode-execute process into the semantics of every instruction, but rather
keep it separate. The reason to do that is that the dataflow of the fetch-decode-execute
process is inherently monadic, i.e. the values of instruction register and instruction counter
dynamically depend on program memory. Besides the fetch-decode-execute process, the only
monadic operation is the semantics of memory-indirect load instruction. The semantics of
all other instructions can be formulated in terms of more lax dataflow classes, thus enabling
us to perform static analysis of non-monadic program fragments. We will discuss that in
more detail in the next chapter.

3.3.1 Coarse-grained operation semantics

We will now define a small-step operational semantics of REDFIN ISA which we further
refine with a Haskell implementation. The semantics is a transition system with its states
being the states of REDFIN ISA and the transitions being instructions.
Definition (ISA state):

The set of states of the REDFIN instruction-set architecture is the Cartesian product of
the states of its seven components:

We can now define the formal semantics of REDFIN instructions and programs as a
state transformer T : S → S, i.e. a function that maps states to states. We distinguish
instructions and programs by using Haskell’s list notation, e.g. Tnop is the semantics of
the instruction nop ∈ I, whereas T[nop] is the semantics of the single-instruction program
[nop] ∈ P . 2

2REDFIN does not have a dedicated nop instruction, but it can be expressed as a jump to the next instruction,
i.e. jmpi 0.

65

Definition (program semantics): The semantics of a program p ∈ P is inductively
defined as follows:

The semantics of the empty program [] ∈ P coincides with the semantics of the instruc-
tion nop and is the identity state transformer: T[] = Tnop = id.

The semantics of a single-instruction program [i] ∈ P is a composition of (i) fetching the
instruction from the program memory Tfetch, (ii) incrementing the instruction counter Tinc,
and (iii) the state transformer of the instruction itself Ti:

Tfetch = , f, c+1)Tinc = (r, m, ic, ir, p, f, c) 7→ (r, m, ic+1, ir, p, f, c)T[i] = Ti◦Tinc◦Tfetch

The semantics of a composite program i:p ∈ P , where the operator : prepends an instruc-
tion i ∈ I to a program p ∈ P , is defined as Ti:p = Tp ◦ T[i].

As an example, let us consider the semantics of some instructions as implemented in the
coarse-grained semantics of REDFIN:

load :: Register -> MemoryAddress -> Redfin ()
load rX dmemaddr = writeRegister rX =<< readMemory dmemaddr

The load instruction loads a value from a memory location to the specified register. The
(=<<) :: Monad f => (a -> m b) -> m a -> m b function is the monadic bind with its
arguments swapped. Here we can see why we call this approach coarse-grained. The use of
the monadic bind implicitly introduces the data dependency on the whole memory space,
even though we only need a single address.

The next function implements the semantics of an unconditional jump and is formulated
as an explicit state transformer:

jmpi :: SImm10 -> Redfin ()
jmpi simm = transformState $

\ (State rs ic ir fs m p c)
-> State rs (ic + fromSImm10 simm) ir fs m p c

To perform a jump means to advance the instruction counter ic. Even though we only
need to alter this particular item in the state, we still need to depend on the state as a

66

whole. Even though we see the subject of the alteration in the source code, we would not
be able to determine it by automated static ananlysis

A conditional jump instruction semantics reuses the unconditional one, but predicates
the state update on the value of the Condition flag:

jmpi_ct :: SImm10 -> Redfin ()
jmpi_ct simm = do

condition <- readFlag Condition
state <- readState
let jumpState = snd $ transform (jmpi simm) state
writeState $ ite condition jumpState state

In this semantics, we explicitly merge the two possible future states via the symbolic
conditional ite: the “jumped” with the instruction counter altered, and the “fall-though”.

The resulting program semantics is a sequence of state updates comprising the result-
ing state transformer. The presented formal semantics is coarse-grained since the state
transformers are inherently monadic and operate on the whole ISA state. While this ap-
proach has the benefit of being very intuitive, it could be refined by specifying more precise
state alterations. This leads to a semantics based on fine-grained state transformers. This
semantics will be dataflow-aware, and can be though of as a tree, rather than as a sequence.

We give an extended account of the coarse-grained semantics and the verification frame-
work based on it in the chapter 4.

3.3.2 Fine-grained dataflow-aware semantics

The semantics based on coarse-grained state transformers presented in the previous section
has a number of limitations in terms of what kind of programs can be verified and how.
We do not discuss these limitation in detail here, and refer the reader to the following
chapters 4 and 5. We, however, present a different approach, based on the novel formalism
of fine-grained state transformer.

In the fine-grained semantics, the state transformers do not operate on the ISA state as
a whole, but rather impose constraints on the state to contain specific keys, with every key
being a constructor of the Key data type (fig. 3.2).

We will have an extensive discussion of fine-grained state transformers, and the verifica-
tion framework for REDFIN that employs them, in chapter 5. For now, we limit ourselves to

67

a concise demonstration of the approach by presenting the semantics of several instruction.
The dataflow-awareness that is brought by the InstructionImpl datatype of instruction’s
abstract syntax allows us to derive several distinct useful interpretations of the abstract
semantics of instructions.

3.3.2.1 Linear dataflow

The instructions marked with Functor have linear dataflow, meaning that the instruction
has no ability to replicate inputs: if one inputs flows into the instruction, there will be exactly
one flowing out. For example, the Load instruction fetches the contents of a memory cell
and writes it into a register:

Load :: Register -> CAddress -> InstructionImpl Functor value a

load :: Register -> Address -> FS Key Functor '[] a
load reg addr read write = write (Reg reg) (read (Addr addr))

load R0 0
Register R0

load R0 0

Address 0

The Store instruction does the reverse, i.e. stores the contents of a register into a memory
cell:

Store :: Register -> CAddress -> InstructionImpl Functor value a

store :: Register -> Address -> FS Key Functor '[] a
store reg addr read write = write (Addr addr) (read (Reg reg))

store R0 0

Register R0

store R0 0

Address 0

The semantics of Load and Store constitute a degenerate form of the linear fine-grained
state transformer. One may notice, that they, in fact, do not need the interface of the
Functor type class at all. We, however, assign them with it for simplicity of treatment.

A non-degenerate linear fine-grained state transformer implements the semantics of an
unconditional jump, the Jump instruction:

68

Jump :: value a => Imm a -> InstructionImpl Functor value a

jump :: Imm a -> FS Key Functor '[Num] a
jump (Imm offset) read write = write IC (fmap (+ offset) (read IC))

jump 42
Register PC

jump 42

The Jump instruction fetches the current instruction counter using the read base transformer,
transforms the fetched value by using the fmap method of the Functor type class and writes
the result with the offset applied back to the instruction counter. There are several notable
features of this computations that we need to break down:

1. Note that the first argument of the jump function of type Imm a, the immediate jump
offset, is not displayed in the dataflow diagram on the right. It is omitted because it
is a pure value, and is not a part of the ISA state, therefore can not directly effect the
overall semantics. However, we still see it as the immediate of the instruction in the
dataflow diagram.

2. The instruction syntax, the Jump constructor of the InstructionImpl data type,
carries the value constraint on the existential type variable a of the result. In the
semantics, the jump function, we instantiate value to be the singleton list '[Num].
This allows us to use arithmetic in the semantics, specifically the (+) function to
offset the instruction counter. This indicate the second difference from the semantics
of Load and Store, which were parametric in the type variable a.

3. Again, the semantics of Jump uses the interface provided by the Functor type class
and thus does indeed require this constraint.

The unconditional jump is the most complicated semantics we can express with the very
limited capabilities of a linear fine-grained state transformer. To express more intricate
semantics, like that of arithmetical instructions, we need additional power to be able to
read and write values of several data locations.

69

3.3.2.2 Static Tree Dataflow

The linear semantics is only allowed to have one input and one output data dependency.
The next step is to allows several static input and output dependencies by given the state
transformer an access to the Applicative type class. Consider the semantics of the absolute
value, the Abs instruction:

Abs :: Register -> InstructionImpl Applicative value a

abs :: Register
-> FS Key Applicative '[Monoid, Num, Bounded, Boolean, BEq] a

abs reg read write =
let arg = read (Reg reg)

o = absOverflows <$> arg
result = (Prelude.abs) <$> arg

in write (F Overflow) o *> write (Reg reg) result

absOverflows :: (Bounded a, Boolean a, BEq a) => a -> a
absOverflows arg = arg === minBound

abs R0

Register R0

Flag Overflow

abs R0

The semantics of Abs reads the value of a register and computes two things based off it:
(1) the absolute value of the argument and (2) the overflow condition. The computation
of absolute value on two’s complement integers will overflow if called on the minimal value
that could be represented at the given bit width. The semantics employs the Bounded class
to be aware of the minBound and the BEq class to compare values for equality. As for the
dataflow, the semantics uses the Applicative’s sequencing operator (*>) to perform two
write operations: to the Overflow flag and to the target register.

Note that the linear semantics of Load, Store and Jump may need to be promoted to
the static tree one if memory safety considerations are brought into scope. For example, the
instruction semantics can raise an OutOfMemory flag if the address requested lies outside
of the valid address space. However, in this thesis we do not implement memory safety
checks in the semantics. In order to keep the semantics itself as simple as possible, it is
wise to offload some of the checks to the implementation backend. We do just that, and
validate data and program memory access by imposing constraints on variables in concrete
and symbolic execution. In concrete execution, an invalid memory access would cause an

70

exception, while in symbolic execution it would result in a constraint system pin-pointing
the erroneous instruction. More on that in the next chapter.

A little more complicated example of static tree semantics can be given to binary arith-
metic operations, for example, addition. The semantics reads two data locations instead of
just one in Abs and features a more involved overflow check:

Add :: Register -> CAddress -> InstructionImpl Applicative value a

add :: Register -> Address
-> FS Key Applicative '[Monoid, Num, Bounded, Boolean, BOrd] a

add reg addr read write =
let arg1 = read (Reg reg)

arg2 = read (Addr addr)
o = addOverflows <$> arg1 <*> arg2
result = (+) <$> arg1 <*> arg2

in write (F Overflow) o *> write (Reg reg) result

addOverflows :: (Num a, Bounded a, Boolean a, BOrd a)
=> a -> a -> a

addOverflows x y =
let o1 = gt y 0

o2 = gt x (maxBound - y)
o3 = lt y 0
o4 = lt x (minBound - y)

in o1 &&& o2 ||| o3 &&& o4

add R0 0

Register R0

Address 0

Flag Overflow

add R0 0

The addOverflows is a pure function that, when applied to two numbers, computes a
boolean condition that indicates if the sum will overflow the Bounded type a. The result of
this function will be written into the Overflow flag as a concrete boolean by the concrete
backend and as a symbolic constraint by the symbolic execution backend. The polymor-
phism of fine-grained state transformers allows us to express both as a single computation
and give it different interpretations by supplying the relevant read and write base trans-
formers.

In the next section we will be considering conditional jumps, which can not be expressed
with static tree transformers. However, conditional jumps need conditions, and calculation
of those can be done with the applicative interface of static tree transformers:

71

CmpEq :: Register -> CAddress -> InstructionImpl Applicative value a

cmpEq :: Register -> Address
-> FS Key Applicative '[Boolean, BEq, Monoid] a

cmpEq reg addr read write =
write (F Condition)

((===) <$> read (Reg reg) <*> read (Addr addr))

cmpEq R0 0

Register R0

Address 0

Flag Condition

cmpEq R0 0

Here, we apply the equality operator (===) to the data in the register and the memory
location, and put the resulting boolean into the Condition flag.

So far we have been looking at linear and static tree fine-grained state transformers,
therefore the dataflow diagrams on the right hand side were precise, i.e. we know, statically,
from the source code of the semantics, the exact locations it will read and write. Let us
go further and consider selective tree transformers, that still can be analysed statically for
their data dependencies, but do not have to access or modify them all.

3.3.2.3 Selective Tree Dataflow

Selective tree fine-grained state transformers are governed by the new, recently introduced
interface of selective applicative functors [16]. Selective applicative functors extend the
Applicative type class of applicative functors with conditional execution, without losing
amenability to static analysis.

In fact, the very idea of selective applicative functors has been inspired by the semantics
of conditional jumps in instruction-set architectures. Without further delay, let us consider
the selective transformer that gives the semantics to conditional jumps in REDFIN:

72

JumpCt :: value a => Imm a -> InstructionImpl Selective value a

jumpCt :: Imm a -> FS Key Selective '[Boolean, Num] a
jumpCt (Imm offset) read write =

ifS (toBool <$> read (F Condition))
(write IC ((+) <$> pure offset <*> read IC))
(pure 0)

jumpCt 42 Register PC

Flag Condition

jumpCt 42

The semantics of JumpCt reads the value of the Condition flag and performs the jump if
that value evaluates to true. This is done via the effectful conditional operator ifS of type
Selective f => f Bool -> f a -> f a -> f a. Note that we need the toBool function
to be applied to the value of the flag to force the evaluation of the boolean in the concrete
execution backend. The symbolic execution backend, in turn, uses a different instance of
Selective and evaluates both branches, updating their path conditions accordingly, thus
making a conservative approximation of the jump’s behaviour. The same is done by the
static analysis backend to produce the dataflow diagram shown on the right. The selective
semantics allows us to declare the effects of an instruction statically, and choose which of
them to actually execute at runtime.

The selective fine-grained transformers provide enough flexibility to express the semantics
of most of the instructions in REDFIN. This allows to enjoy the benefits of the delicate
balance between static analysis and efficient execution that the Selective interface provides
for many real-world programs. We will have a closer look at the examples in Chapter 5.

However, there is one instruction that requires even more expressive power, since its
semantics involves transferring values between unpredictable, dynamic locations.

3.3.2.4 Dynamic Tree Dataflow

The instruction in question is LoadMI, which implements indirect memory access. Effectively,
it enables using integer values stored in memory as pointers to access other addresses. The
semantics of indirect memory access cannot be naturally expressed with the interface of the
Selective type class, since it requires “unwrapping” of the integer value read from memory
and interpreting it as an address for the consecutive memory access. Such behaviour can
be naturally implemented with the monadic bind operation (>>=):

73

LoadMI :: Register -> CAddress -> InstructionImpl Monad value a

loadMI :: Register -> Address -> FS Key Monad '[Addressable, Show] a
loadMI reg pointer read write =

read (Addr pointer) >>= \x ->
case toAddress x of

Nothing -> error $
"ISA.Semantics.loadMI: invalid address " <> show x

Just addr -> write (Reg reg) (read (Addr addr))

loadMI R0 0
Register R0

load R0 0

Address 0

0 1 ... 1023

Here, the (>>=) operation allows treating the result of an effectful computation as a pure
value, and thus perform case analysis on it. The downside of this is that we cannot anymore
predict the target address to be accesssed, and the dataflow diagram on the right becomes
too general to be useful, effectively treating any memory location as potentailly accessed.
We therefore conclude, that the semantics of LoadMI can only be expressed as a coarse-
grained state transformer.

Thankfully, indirect memory access in the only instruction in the REDFIN ISA that
cannot be effectively implemented as a fine-grained state transformer. This setback will not
hinder the benefits of the semantics as a whole, since we can give special treatment to this
particular instruction in the backends, as we will see in the chapter 5.

3.4 Conclusion

In this chapter, we have presented the syntax of the REDFIN ISA, the representation of its
state and two approaches to formulating its semantics. In the following two chapters 4 and 5,
we will discuss these approaches in more detail and how to use them to build executable
specification and verification frameworks for REDFIN.

74

Chapter 4

REDFIN semantics and program

verification with coarse-grained

monadic state transformers

In this chapter we describe the design of a model of the REDFIN ISA in terms of monadic
state transformers; the model allows for both simulating REDFIN programs with concrete
values for debugging and testing and for symbolically executing them with abstract symbolic
variables for verifying their functional correctness, as well as some non-functional properties.

We represent the state of the REDFIN ISA as an ADT, and the semantics of instructions
then are denoted as state transformers, i.e. pure functions that encode the changes of ISA
state. We then use the established [86] fact that state transformers form a monad, and thus
can exploit the support for monads in the Haskell programming language, giving both the
benefit of the mathematical rigour, since all Monad instances have to obey monadic laws,
and the ease of describing the semantics of instructions with do-notation.

In order to construct a fully usable ISA model which could be employed to simulate
and verify REDFIN programs, we need to implement a number of components. First, since
the machine and the human programmer work on different level of abstractions, it is not
enough to implement an interpreter for the machine codes, i.e. the binary representation of

75

REDFIN instructions; we also need to implement an assembly language providing human-
readable mnemonics for REDFIN instructions. Although, the assembly commands are
more comprehensible than raw machine code, it is still very difficult to tell, even for a
short program, what exactly is its meaning; thus, for the purpose of verifying the functional
properties of REDFIN programs implemented in assembly, it would be good to have a high-
level language that could be compiled down to REDFIN machine code and could be used
as a concise specification language. To implement these components, we will follow the
language-oriented programming paradigm and design a number of EDSLs.

SMT formula
(SMT-LIBv2)

Formal verification: type and model checking

Specification
 EDSL

SMT solver
(Z3)

Assembly
State

transformer

Executable
Conventional

simulation & test

REDFIN-specific backend

Figure 4.1: Overview of the presented verification approach.

Fig. 4.1 shows an overview of the model. The bottom part corresponds to conventional
code generation and test, where REDFIN assembly language is executed by simulating the
effect of each instruction on the state of the processor and memory. The corresponding
state transformer is typically implicit and intertwined with the rest of the simulation in-
frastructure. The main idea of our approach is to represent the state transformer explicitly
so that it can be symbolically manipulated and used not only for simulation but also for

76

formal verification. The latter is achieved by compiling state transformers to SMT formulas
and using an SMT solver, e.g. Z3 [60], to verify that certain correctness properties hold,
for example, that integer overflow cannot occur regardless of input parameters and that the
program always terminates within stated time.

By using Haskell as the host language we can readily implement embedded compilers
from higher-level typed languages to untyped assembly, eradicating incorrect number and
unit conversion bugs. As shown at the top of Fig. 4.1, engineers can write high-level control
programs for the REDFIN architecture directly in a small subset of Haskell. These high-
level programs can be used for type-safe code generation and as executable specifications of
intended functionality.

To facilitate whole-program verification, we use a specific flavour of symbolic execution
known as symbolic execution with merging. In this approach, whenever a branch in the
program is encountered, the symbolic execution engine performs merging of the two resulting
disjunctive states into one, thus producing linear traces which could be translated into
singular SMT-formulas representing whole programs. An overview of symbolic execution
techniques can be found in the background chapter, section 2.1.3.

4.1 The REDFIN ISA state

In this section we define the state of the REDFIN instruction-set architecture, outlining
all the components of the state and how they are represented as Haskell data types which
support symbolic execution.

77

data State = State
{ registers :: RegisterBank
, memory :: Memory
, instructionCounter :: InstructionAddress
, instructionRegister :: InstructionCode
, program :: Program
, flags :: Flags
, clock :: Clock }

type Value = SymbolicValue (IntN 64)

type Register = SymbolicValue (WordN 2)
type RegisterBank = SymbolicArray (WordN 2) (IntN 64)

type MemoryAddress = SymbolicValue (WordN 8)
type Memory = SymbolicArray (WordN 8) (IntN 64)

type InstructionAddress = SymbolicValue (WordN 10)
type InstructionCode = SymbolicValue (WordN 16)
type Opcode = SymbolicValue (WordN 6)
type Program = SymbolicArray (WordN 10) (WordN 16)

data Flag = Condition | Overflow | Halt ...
type Flags = SymbolicArray Flag Bool
type Clock = SymbolicValue (WordN 64)

Figure 4.2: Basic types for modelling REDFIN.

The State of the entire processing core is a product of states of every component, see
Fig. 4.2. We define SymbolicValue and SymbolicArray on top of the SBV library [87]
that we use as a frontend for SMT translation and verification.

There are 4 registers (addressed by WordN 2) and 256 memory cells (addressed by
WordN 8) that store 64-bit values (IntN 64). The register bank and memory are represented
by symbolic arrays that can be accessed via SBV’s functions readArray and writeArray.
REDFIN uses 16-bit InstructionCodes, whose 6 leading bits contain the opcode, and the
remaining 10 bits hold instruction arguments. A Program maps 8-bit instruction addresses
to instruction codes.

Note that we use indexed types to represent bit-vectors (i.e. WordN 8, IntN 64 etc.) as
a lightweight type-based verification mechanism for making sure that the especially error-
prone components of the model, for example the instruction decoder and the assembler, will
benefit from Haskell’s type-checker ensuring that the bit-vector sizes always are compatible.
We will see the benefits when we discuss the assembly EDSL.

78

The status Flags support conditional branching, track integer overflow, and terminate
the program (we omit a few other flags for brevity. The Clock is a 64-bit counter incre-
mented on each clock cycle. Status flags and the clock are used for diagnostics, formal
verification, and worst-case execution time analysis.

4.2 Instruction and Program Semantics

In this section, we instantiate the abstract operational semantics presented in chapter 3 with
monadic state transformers. This concrete semantics is written in idiomatic Haskell and has
an advantage of closely resembling a simple instruction interpreter. However simple it may
look, this semantics is in fact powerful enough to facilitate formal verification of terminating
programs by symbolic execution.

We represent state transformers in Haskell using the state monad, a classic approach to
emulating mutable state in a purely functional programming language [86]. We call our
state monad Redfin and define it as follows1:

data Redfin a = Redfin { transform :: State -> (a, State) }

A computation of type Redfin a yields a value of type a and possibly alters the State of
the REDFIN instruction-set architecture. The type Redfin () describes computations that
do not produce any value as part of the state transformation and thus only return () — the
only value of type () (also known as the unit type); such computations directly correspond
to state transformers.

For example, here is the state transformer Tinc:

incrementInstructionCounter :: Redfin ()
incrementInstructionCounter = Redfin $ \current -> ((), next)

where
next = current { instructionCounter = instructionCounter current + 1 }

In words, the state transformer looks up the value of the instructionCounter in the
current state and replaces it in the next state with the incremented value. We can com-
pose such primitive computations into more complex state transformers using Haskell’s
do-notation:

1A generic version of this monad is available in the standard module Control.Monad.State.

79

readInstructionRegister :: Redfin InstructionCode
readInstructionRegister = Redfin $ \s -> (instructionRegister s, s)

executeInstruction :: Redfin ()
executeInstruction = do

fetchInstruction
incrementInstructionCounter
instructionCode <- readInstructionRegister
decodeAndExecute instructionCode

Here readInstructionRegister reads the instruction code from the current state with-
out modifying it, and is subsequently used in executeInstruction, which defines the se-
mantics of the REDFIN execution cycle. We omit definitions of fetchInstruction and
decodeAndExecute for brevity. The latter is a case analysis of 47 opcodes that returns the
matching instruction.

The verification framework which we base on the state transformer semantics is designed
as symbolic-first, i.e. we prioritise the ability to verify properties of REDFIN program
by symbolic execution and treat testing and concrete simulation as secondary facilities.
But in fact, the design of the framework and the SMT Based Verification (SBV) library
allows to use the very same symbolic execution semantics for concrete execution too, by
supplying concrete values instead of symbolic variables as inputs. Therefore, the symbolic
simulation function (fig. 4.3) can be used for both testing and formal verification. The
simulate function is essentially a modification of the Ti:p state transformer semantics of
a composite program, with an additional account for early cut-off after steps transition
or after the Halt flag has been set. The latter condition is checked symbolically using the
symbolic conditional operator ite: if the processor is halted we return the current state,
otherwise we proceed with the next transition.

simulate :: Word -> State -> State
simulate steps state
| steps == 0 = state
| otherwise = let halted = readArray (flags state) (flagId Halt)

nextState = snd $ transform executeInstruction state
in ite halted

state
(simulate (steps - 1) nextState)

Figure 4.3: Implementation of the REDFIN state transformer

80

Now, when the general execution facilities are established, we discuss the semantics of
several instructions below.

4.2.1 Halting the Processor

The instruction halt sets the flag Halt, which stops the execution of the current subroutine
until a new one is started by a higher-level system controller that resets Halt.

halt :: Redfin ()
halt = writeFlag Halt true

The auxiliary function writeFlag modifies the flag:

writeFlag :: Flag -> SymbolicValue Bool -> Redfin ()
writeFlag flag value = Redfin $ \s -> ((), s')

where
s' = s { flags = writeArray (flags s) (flagId flag) value }

In the rest of the chapter we will use auxiliary functions readRegister, writeRegister,
readState, etc.; they are simple state transformers defined similarly to writeFlag and
readInstructionRegister.

4.2.2 Arithmetics

The instruction abs is more involved: it reads a register and writes back the absolute
value of its contents. The semantics accounts for the potential integer overflow that leads
to the negative resulting value when the input is −263 (REDFIN uses the common two’s
complement signed number representation). The overflow is flagged by setting Overflow.
We use SBV’s symbolic if-then-else operation ite to merge two symbolic values — in this
case two possible next states, one of which is a state with the Overflow flag set:

abs :: Register -> Redfin ()
abs reg = do

state <- readState
result <- fmap Prelude.abs (readRegister reg)
let (_, state') = transform (writeFlag Overflow true) state
writeState $ ite (result .< 0) state' state
writeRegister reg result

81

4.2.3 Conditional Branching

As an example of a control flow instruction consider jmpi_ct, which tests the Condition

flag, and adds the provided signed offset to the instruction counter if the flag is set.

jmpi_ct :: SImm10 -> Redfin ()
jmpi_ct offset = do

ic <- readInstructionCounter
condition <- readFlag Condition
let ic' = ite condition (ic + offset) ic
writeInstructionCounter ic'

It is possible to write REDFIN programs directly in the semantics, however it is a difficult
enterprise, akin to programming on the ISA level: all jumps have to be resolved manually;
thus, in the next section we describe the design and implementation of an assembly language
for REDFIN.

4.3 Simulation and formal verification

In the previous sections we have developed the facilities for modelling the REDFIN instruction-
set architecture: how the state is represented, how the semantics of individual instructions is
described in terms of state transformers and what syntax can be used to construct programs
and specify their functional properties. However, we are still to discuss program simulation,
testing and formal verification. In this section we will cover these topics and tie together
the different parts of the verification framework.

The verification framework is designed with the following workflow in mind:

1. Develop programs in low-level REDFIN assembly, or in a high-level typed language
embedded in Haskell.

2. Test REDFIN programs on concrete input values.

3. Define functional correctness and worst case execution time properties using the Ex-
pression EDSL and SBV.

4. Verify the properties or obtain counterexamples.

82

4.3.1 Energy estimation control task

For demonstrating the workflow, we continue to employ the energy estimation control task:

Let t1 and t2 be two different time points (measured in ms), and p1 and p2 be
two power values (measured in mW). Calculate the estimate of the total energy
consumption during this period using linear approximation, rounding down to the
nearest integer:

energyEstimate(t1, t2, p1, p2) =
⌊ |t1 − t2| ∗ (p1 + p2)

2

⌋
.

We can write programs in the low-level REDFIN assembly, or in a higher-level expression
language. The former allows engineers to hand-craft highly optimised programs under tight
resource constraints, while the latter brings type-safety and faster prototyping. We start
with the high-level approach and define an expression that can be used both as a Haskell
function and a high-level REDFIN expression:

energyEstimate :: Integral a => a -> a -> a -> a -> a
energyEstimate t1 t2 p1 p2 = abs (t1 - t2) * (p1 + p2) `div` 2

Thanks to polymorphism, we can treat energyEstimate both as a numeric function, and as
an abstract syntax tree that can be compiled into a REDFIN assembly Script, as described
in section 6.2, thus facilitating specification of functional properties of REDFIN programs.
Naturally, the compiled program will require declaring the memory layout of the input
variables:

energyEstimateHighLevel :: Script
energyEstimateHighLevel =

let [t1, t2, p1, p2] = map varAtAddress [0, 1, 2, 3]
in compile (energyEstimate t1 t2 p1 p2)

The varAtAddress function is an alias for the composition of data constructors Var and
MkVariable which creates a variable in the abstract syntax and indicates that it is located
at the given memory address. The let block declares four adjacent memory addresses: four
input values {t1, t2, p1, p2}. We compile the high-level expression energyEstimate into the

83

assembly language by translating it to a sequence of REDFIN instructions. By convention,
the calculated result will be placed in the register r0.

4.3.1.1 Program simulation

We can run simulation for at most 100 steps, initialising the program and data memory of
the processor using the function simulate defined in section 4.2 (fig. 4.3):

main = do
let dataMemory = [10, 5, 3, 5]

finalState = simulate 100 $ boot energyEstimateHighLevel dataMemory
putStrLn $ "R0: " ++ show (readArray (registers finalState) r0)

As the simulation result we get a finalState. We inspect it by printing relevant component:
the result of the computation located in the register r0.

R0: 20

4.3.1.2 Formal verification

Simulating programs with specific inputs is useful for diagnostics and test, but SMT solvers
allow us to verify the correctness for all valid input combinations. To demonstrate this,
let us discover a problem in our energy estimation program. Consider the following total
correctness2 property:

Assuming that values p1 and p2 are non-negative integers, the energy estimation
subroutine must always terminate and return a non-negative integer value.

To check that the program meets this requirement, we symbolically execute the high-
level energy estimation program to translate it into an SMT formula, and formulate the
property:

ex4_5_1_1 = do
[t1, t2, p1, p2] <- symbolics ["t1", "t2", "p1", "p2"]
constrain $ t1 .>= 0
constrain $ t2 .>= 0

2As opposed to partial correctness, which does not include termination, we also verify that the REDFIN core has
halted, by checking the status of the Halt flag.

84

constrain $ p1 .>= 0
constrain $ p2 .>= 0
let prog = assemble energyEstimateHighLevel

steps = 100
mem = mkMemory [(0, t1), (1, t2), (2, p1), (3, p2)]

let initialState = boot prog defaultRegisters mem defaultFlags
finalState = simulate steps initialState
result = readArray (registers finalState) 0
halted = readArray (flags finalState) (flagId Halt)

pure $ halted
.&& result .>= 0

Note how this time we declare the inputs {t1, t2, p1, p2} as symbolic variables, constrain
them to be non-negative and explicitely lay them out in memory. We form the initial state
with the boot function supplying the program and the states of registers, memory and flags.
Next, we extract the computed result and the value of the flag Halt from the finalState,
and then assert that the processor has halted, and that the result is non-negative. The
resulting SMT formula can be checked by Z3 in 3.0s3:

> proveWith z3 theorem
Falsifiable. Counter-example:
t1 = 5190405167614263295 :: Int64
t2 = 0 :: Int64
p1 = 149927859193384455 :: Int64
p2 = 157447350457463356 :: Int64

Z3 has found a counterexample demonstrating that the program does not satisfy the above
property. Indeed, the expression evaluates to a negative value on the provided inputs due
to an integer overflow. We therefore refine the property:

According to the spacecraft power system specification, p1 and p2 are non-negative
integers not exceeding 1W. The time is measured from the mission start, hence t1

and t2 are non-negative and do not exceed the time span of the mission, which is
30 years. Under these assumptions, the energy estimation subroutine must return a
non-negative integer value.

We need to modify time and power constraints accordingly:

constrain $ t1 .>= 0 .&& t1 .<= toMilliSeconds (30 % Year)
constrain $ t2 .>= 0 .&& t2 .<= toMilliSeconds (30 % Year)

3We use a laptop with 2.90GHz Intel Core i5-4300U processor, 8GB RAM (3MB cache), and the SMT solver Z3
v4.5.1 (64-bit).

85

constrain $ p1 .>= 0 .&& p1 .<= toMilliWatts (1 % Watt)
constrain $ p2 .>= 0 .&& p2 .<= toMilliWatts (1 % Watt)

Rerunning Z3 produces the desired QED outcome in 4.8s.
The refinement has rendered the integer overflow impossible; in particular, abs can never

be called with−263 within the mission parameters. Such a guarantee fundamentally requires
solving an SMT problem, even if it is done at the type level, e.g. using refinement types [88].

The statically typed high-level expression language is very convenient for writing REDFIN
programs, however, an experienced engineer can often find a way to improve the resulting
code. In some resource-constrained situations, a fully hand-crafted assembly code may be
required. As an example, consider the following low-level program:

energyEstimateLowLevel :: Script
energyEstimateLowLevel = do

let { t1 = 0; t2 = 1; p1 = 2; p2 = 3 }
ld r0 t1
sub r0 t2
abs r0
ld r1 p1
add r1 p2
st r1 p2
mul r0 p2
sra_i r0 1
halt

This program computes the energy estimate using only 9 instructions, whereas a direct
unoptimised translation of the energyEstimate expression into assembly uses 79 instruc-
tions, most of them for stack manipulation.

4.3.1.3 Checking program equivalence

To support the development of hand-crafted code, we use Z3 to check the equivalence of
REDFIN programs by verifying that they produce the same output on all valid inputs. This
allows an engineer to optimise a high-level prototype and have a guarantee that no bugs
were introduced in the process.

ex4_5_1_3 = do
[t1, t2, p1, p2] <- symbolics ["t1", "t2", "p1", "p2"]
constrain $ t1 .>= 0 .&& t1 .<= toMilliSeconds (1 % Year)
constrain $ t2 .>= 0 .&& t2 .<= toMilliSeconds (1 % Year)

86

constrain $ p1 .>= 0 .&& p1 .<= toMilliWatts (1 % Watt)
constrain $ p2 .>= 0 .&& p2 .<= toMilliWatts (1 % Watt)
let steps = 100

mem = mkMemory [(0, t1), (1, t2), (2, p1), (3, p2)]
let progLL = assemble energyEstimateLowLevel

progHL = assemble energyEstimateHighLevel
let initialStateLL = boot progLL defaultRegisters mem defaultFlags

initialStateHL = boot progHL defaultRegisters mem defaultFlags
let finalStateLL = simulate steps initialStateLL

finalStateHL = simulate steps initialStateHL
let resultLL = readArray (registers finalStateLL) 0

resultHL = readArray (registers finalStateHL) 0
pure $ resultLL .== resultLL

The equivalence check succeeds and takes 11.5s.

4.3.1.4 Worst-Case Execution Time analysis

Every call of the executeInstruction function advances the clock field of the State

(see fig. 4.2) by the appropriate number of cycles, precisely matching the hardware imple-
mentation. This allows us to perform best/worst-case execution timing analysis using the
optimisation facilities of SBV and Z3. As an example, let us determine the minimum and
maximum number of clock cycles required for executing energyEstimateLowLevel. To
make this example more interesting, we modified the semantics of the instruction abs and
added 1 extra clock cycle in case of a negative argument.

timingAnalysis = optimize Independent $ do
... -- Initialise and run symbolic simulation
minimize "Best case" (clock finalState)
maximize "Worst case" (clock finalState)

The total delay of the program depends only on the sign of t1 − t2, thus the best and
worst cases differ only by one clock cycle. The worst case is achieved when the difference is
negative (t1 − t2 = −2), as shown below. Z3 finishes in 0.5s.
Objective "Best case":
Optimal model:
t1 = 549755813888
t2 = 17179869184
p1 = 0
p2 = 0
Best case = 12

Objective "Worst case":
Optimal model:

t1 = 65535
t2 = 65537
p1 = 0
p2 = 0
Worst case = 13

87

4.3.2 Array sum

A number of control tasks require summarising data from sensors, which may be stored as
arrays in memory. As a simple, yet interesting example, let us consider a program that
calculates the sum of numbers in an array (fig. 4.4).

sumArrayLowLevel :: Script
sumArrayLowLevel = do

let { pointer = 0; sum = 253; const_two = 255 } -- ; pointer_store
ld_i r0 0
st r0 sum
ld r1 pointer
add_si r1 1
st r1 pointer

-- compare the pointer variable to the constant 2 (stored in the cell 255)
"loop" cmplt r1 const_two
-- if pointer == 2 then terminate
goto_ct "end"

ldmi r2 pointer
add r2 sum
st r2 sum
ld r1 pointer
sub_si r1 1
st r1 pointer

goto "loop"
"end" ld r0 sum
halt

Figure 4.4: Array summation program

The array summation program implements the following algorithm: assuming the array
length n is known and located in the cell 0, and the array is placed at address range
[2, n + 2], the program loops through the range in reverse order and accumulates the sum
in the memory cell 253, which, upon reaching the termination condition, is copied into the
register r0. Since the array length is known in advance, it is possible to prove that the
program terminates by loop unrolling. This property is essential for the applicability of
formal verification by symbolic execution: if the number of iterations n were to depend
on any symbolic variable, the symbolic execution algorithm would not terminate. We will
discuss the problem of symbolic termination and the approaches to verification of non-
terminating programs later in this thesis.

88

To specify the functional correctness of array summation we can express the algorithm
in Haskell by computing the sum of a list of values. As in the energy estimation example,
to compile the Haskell specification into assembly, we need to also specify how the inputs
variables are laid out in the memory:

sum' :: (Foldable t, Num a) => t a -> a
sum' = foldl' (+) 0

sumArrayHighLevel :: Int -> Script
sumArrayHighLevel arraySize = do

let xs = map varAtAddress [2..(fromIntegral arraySize) + 1]
compile (sum' xs)

The sum' function closely matches the implementation of the corresponding function
in Haskell’s standard library base: we use this implementation in order to additionally
point out the fact that the high-level program, when compiled, will essentially contain a
sequence of instructions corresponding to the unrolled loop from the low-level program 4.4.
This happens because the foldl' function, the strict left fold, is used here to express an
arithmetic imperative loop.

To formulate theorems about array summation, it will be useful to construct a theorem
schema — a higher-order template of a theorem which could be specialised to specific
programs, constrains and statements:

Let xs be the array elements, p be the program and s be a valid initial state. Then
for all predicates P over values and for all predicates Q over REDFIN states, the
following holds:

(∀x ∈ xs, P (x)) =⇒ Q(Tp(s))

I.e. if we constrain array elements with predicate P , then the state after executing
the array summation program p will satisfy the predicate Q.

The schema can be formulated with SBV in as the following Haskell function, which
adds the specific details:

89

theorem :: Int -> Script -> [Value] -> (Value -> Symbolic ())
-> (State -> SBool) -> Symbolic SBool

theorem steps src summands constr statement = do
sequence_ (zipWith ($) (repeat constr) summands)
let mem = mkMemory

(zip [2..] summands ++
[(0, literal . fromIntegral $ length summands)] ++
[(255, 2)])

let prog = assemble src
let initialState = boot prog defaultRegisters mem defaultFlags

finalState = simulate steps initialState
pure $ statement finalState

Figure 4.5: Array sum theorem schema

To form a valid initial state, we lay out the array in memory, put the array size in the
location 0 and the constant 2 (used to check the loop termination condition in the low-level
program) in the cell 255. The symbolic variables which form the array are constrained with
the constr function, which corresponds to the predicate P . The statement of the theorem
(predicate Q) is then applied to the final state.

Let us now verify a number of statements about low and high-level array summation
programs and discuss how verification time is affected by the array size.

4.3.2.1 Integer overflow

Using the theorem schema 4.5, let us formulate and prove that integer overflow is guaranteed
to not occur if the array is of length 15 and its elements are non-negative and do not exceed
10004:

ex4_5_2_1 =
let constr x = constrain (x .>= 0 .&& x .<= 1000)

statement state =
let halted = readArray (flags state) (flagId Halt)

overflow = readArray (flags state) (flagId Overflow)
in halted .&& sNot overflow

in theorem 1000 sumArrayLowLevel 15 constr statement

The statement of the theorem specifies that the program terminates and that the Overflow

flag is not set in the final state. Remember that due to the nature of the symbolic execution
algorithm that SBV uses, the final state of the overflow flag will contain the symbolic merge

4These constrains look somewhat arbitrary and not motivated by performance bounds. We will discuss the
performance limitations later in this section.

90

of all the states encountered during the execution of the program; thus the statement is
sufficient to check for absence of overflow. The same property can be formulated for the
high-level program. Note that it is vital to give a big enough execution bound (steps) for
the program to terminate — here 1000 is enough, but an array of 53 elements would already
require a larger number of steps.

4.3.2.2 Program equivalence

For the energy estimation task we were checking equivalence of the high-level compiled
program and hand-crafted low-level assembly. Same could be done for the array sum pro-
grams, but let us demonstrate another option. We could directly use the sum' function as
a specification and check its functional equivalence to the low-level program by symbolic
execution:

ex4_5_2_3 :: Symbolic SBool
ex4_5_2_3 = do

let names = map (("x" ++) . show) [1..15]
summands <- symbolics names
let constr x = constrain (x .>= 0 .&& x .<= 1000)

statement state =
let halted = readArray (flags state) (flagId Halt)

result = readArray (registers state) r0
in halted .&& result .== sum' summands
theorem 1000 sumArrayLowLevel summands constr statement

Array Time Time
size Haskell Compiled
6 0.07s 0.09
9 0.07s 0.2s
12 0.26s 1.12s
15 1.57s 8.07s
18 10.9s 1m 3.36s

Table 4.1: Verification time for array summation programs

In this case, the specification will not be compiled into assembly, but instead symbolically
executed as Haskell code directly: this verification problem is easier for an SMT solver to
handle, since there symbolically executed Haskell program produces a simpler SMT formula
than the equivalent compiled assembly program. However, a microbenchmark (table 4.1)
reveals that even though checking the equivalence with the Haskell expression indeed is
faster, the verification time is still appears to be exponential in the length of the array.

91

4.3.3 Discussion

This chapter presents the coarse-grained monad semantics of the REDFIN ISA based and the
verification framework for REDFIN programs based on this semantics. We have discussed
the design and implementation of the framework, and the benefits of the formulating an ISA
semantics as a monadic state transformer. This approach, while it is simple and natural for
embedding a complicated stateful computation into a purely function language, presents a
number of inconveniences for program verification with symbolic execution.

The verification case-studies we have presented in this chapter include an energy esti-
mation program and an array summation program. Both these programs are interesting,
since they belong to distinct classes if assessed by the termination condition. The energy
estimation program is a typical subroutine for REDFIN: it is simple, serving a very specific
computational task; and it is always terminating, i.e. it can be statically proved to only be
executing for a known amount of steps. Formal verification of such programs has been the
base task of this thesis. The array summation program’s termination condition depends on
the specification method we choose. We may consider the array to have a statically known
length, as we did in this chapter, and then the program will trivially terminate in the num-
ber of steps needed for computing one addition multiplied by the array’s length. However,
it is desirable to have a more general specification that would universally quantify over the
array’s length, and prove instances of this specification for a range of length values. Unfor-
tunately, the verification framework described in this chapter, while it is great for trivially
terminating programs, is not suitable for this task. The state space explosion caused by the
symbolic termination conditions is not easily resolved within the state-merging symbolic
execution approach that we have chosen.

While formal verification of trivially terminating arithmetic programs is an important
task in space software engineering, we would like to aim at verification of safety and func-
tional correctness properties of the wider class of REDFIN programs, that do not trivially
terminate. Looping programs with symbolic termination conditions also present an impor-
tant class of REDFIN programs.

We conclude this chapter at this point, and transition to the next one, which describes the
next milestone of this thesis. We will describe the new iteration of the verification framework
for REDFIN programs, based on a novel semantics approach and leveraging a different

92

symbolic execution approach. We will specifically discuss verification of looping programs
with symbolic termination conditions, finally arriving to the case-study of a stepper-motor
control program deployed into an antenna pointing subsystem of a space satellite.

93

Chapter 5

REDFIN semantics and program

verification with fine-grained state

transformers

In this chapter, we present fine-grained state transformers — a novel approach to describing
semantics of computations with effects. We have glanced over this approach in the section
3.3.2 to compare it with the coarse-grained state transformers we discussed in detail in
chapter 4. Now, we give a more detailed account to fine-grained state transformers.

We first formulate the approach in Haskell and present simple intuition and examples.
Further, we use the presented approach to formulate the semantics of REDFIN ISA in a
polymorphic way that admits multiple interpretations and is highly amenable for static
analysis. We then discuss these interpretations and the implementation of the verification
framework for REDFIN ISA.

5.1 Fine-grained state transformers

Fine-grained state transformers provide a methodology for describing effectful computations
in a polymorphic way, abstracting over the effects semantics and instead focusing on their

94

structure. Recall, that Haskell provides a hierarchy of type classes (discussed in section 2.2.4)
to capture a polymorphic interface for effectful computations. Fine-grained transformers
are orthogonal to this hierarchy, and can be used in conjunction with type classes to achieve
even greater flexibility.

Ultimately, a fine-grained state transformer is a function, just like almost everything
else in Haskell is. However, the type of this function is peculiar and employs a number of
advanced type system extensions.

5.1.1 The FS type

The basic idea is to specify an effectful computation by the computational context it operates
in, and by the actions it can perform over this context. A generic context can be thought of
as a key-value store, that associates values of a certain type to a set of keys. An interaction
with such a store can be boiled down to the operations of reading and writing the values
associated with the keys. The flexibility of the approach comes to play when we remember
that the context can be as complicated as we wish, and the reading and writing operations
that are associated with it can have side-effects and thus, besides reading and writing, can
perform some additional context-specific actions.

-- | Fine-grained state transformer
type FS

(key :: Type)
(control :: (Type -> Type) -> Constraint)
(value :: [Type -> Constraint])
(a :: Type) =
forall (f :: Type -> Type).
(control f, CS value a) =>
(key -> f a) ->
(key -> f a -> f a) ->
f a

-- | Constrain the type 'a' by a list of constraints
type family CS (cs :: [Type -> Constraint]) (a :: Type) :: Constraint where

CS cs a = CSGo cs (Any a) a

type family CSGo (cs :: [Type -> Constraint]) (acc :: Constraint) a :: Constraint where
CSGo '[] acc _ = acc
CSGo (x ': xs) acc a = CSGo xs (x a, acc) a

Figure 5.1: The type FS of a fine-grained state transformer

95

An FS computation is defined by the computational context f, the algebraic data type
key of the keys and two parameterised type class constraints. The value parameter defines
the constraints which determine the interface that will be used to define pure values the
computation operates over. For example, it may include the equality constraint Eq, the
numeric constraint Num, or something else. We use a type-level function CS to fold the list
of value constraints into a single one automatically at compile time.

The most interesting ingredient is the control constraint, which accepts a type con-
structor (a type variable of kind Type -> Type) as a parameter. This variable can be,
for example, instantiated with Applicative to only permit statically known shape of side
effects. Or it could be instantiated with Monad to permit arbitrary dynamic effects. As we
will see further, the Selective type class proves to be very useful here.

The FS type is existentially quantified in the type constructor variable f, which will be
constrained by the control constraint and is the computational context the semantics will
be interpreted in. The choice of f determines the interpretation of the polymorphic fine-
grained state transformer. A value of FS type has two explicit arguments, which we will call
the read and write callbacks. The first one, of type key -> f a, receives a key and returns
a value in the computational context f. The read callback describes what does it mean
to read a value associated with the key. The write callback, of type key -> f a -> f a

receives a key and a computation of type f a which describes what needs to be done in
order to compute the value to be written, and write it.

Component Description Haskell implementation
key type of keys the computation operates with sum type
value value interface list of parameterised constraints
control control interface parameterised constraint
f computational context existentially quantified type constructor
read read callback function of type key -> f a
write write callback function of type key -> f a -> f a

Table 5.1: Description of fine-grained stateful computation components

Through the use of ad-hoc polymorphism via type classes, rank-2 polymorphic functions
and existential quantification, the FS type achieves high flexibility. We will demonstrate
the benefits this flexibility brings by considering how the semantics of REDFIN ISA can be
modelled with fine-grained state transformers.

96

5.2 REDFIN ISA semantics as a fine-grained state trans-

former

In the previous chapter, we have discussed a model of REDFIN ISA based in coarse-
grained state transformers. That model, while suitable simple and suitable for verification
of straight-line programs, suffers when many conditional jumps are involved. Also, since the
coarse-grained semantics is inherently monadic, the model does not permit static analysis.

In this section, we model the REDFIN ISA semantics as a fine-grained state transformer.
We will describe the semantics polymorphically. By varying the components from table 5.1,
while keeping the key data type fixed, we will give several interpretations to the polymorphic
semantics.

In the course of this section, we will describe more concretely the ingredients that the
table 5.1 outlines. We get started by instantiating the key parameter with a concrete data
type representing the data locations of REDFIN ISA.

5.2.1 Data types

The REDFIN ISA has six types of data locations, represented by the six data constructors
of the Key data type (figure 5.2):

• Reg’s are the four general-purpose registers of REDFIN;

• Addr represents a potentially symbolic memory location;

• F refers to the field of the status register;

• IC is the instruction counter — during program execution it contains the address of
the next instruction to be fetched from program memory;

• IR is the instruction register — during program execution it contains the binary in-
struction code of the fetched instruction;

• Prog is an address in program memory.

97

Note that the REDFIN ISA has separate memory regions for data and instructions.
We, however, model them similarly and reuse the data type of addresses, even though the
program addresses will never be accessed symbolically.

data Key where
-- | data register
Reg :: Register -> Key
-- | memory cell
Addr :: Address -> Key
-- | flag, a special boolean register
F :: Flag -> Key
-- | instruction counter
IC :: Key
-- | instruction register
IR :: Key
-- | program address
Prog :: Address -> Key

-- | Registers
data Register = R0 | R1 | R2 | R3

-- | Concrete memory address
newtype CAddress = CAddress Word8

-- | Immediate argument
newtype Imm a = Imm a

-- | Flags
data Flag

= Halted
| Condition
| Overflow
| DivisionByZero

-- | Binary instruction code
newtype InstructionCode =

InstructionCode Word16

Figure 5.2: REDFIN ISA keys

The data type of keys in figure 5.2 account for potentially symbolic memory addresses,
but we have not yet introduced how they are represented. We will do so soon, just before
transferring to discussing the semantics of instructions.

5.2.2 Value type classes

To provide an interface to manipulate both concrete and symbolic values in a unified way,
we reuse some of the standard Haskell type classes and define our own where there is no
standard alternative. For arithmetic, we reuse Haskell’s Num type class since it also gives us
shallowly-embedded numeric literals. We, however, need our own equality and order type
classes, since the standard ones, Eq and Ord, are fixed to the Bool result type. Therefore, we
also define a type class Boolean for boolean values, which abstracts the usual connectives
of boolean algebra.

98

class Boolean a where
-- | Conversion to and from 'Bool'
toBool :: a -> Bool
fromBool :: Bool -> a

--| Constants
true :: a
false :: a

-- | Negation
not :: a -> a

-- | Disjunction
infixr 2 |||
(|||) :: a -> a -> a

-- | Conjunction
infixr 3 &&&
(&&&) :: a -> a -> a

class BEq a where
infix 4 ===
(===) :: a -> a -> a

class BEq a => BOrd a where
-- | Less then
infix 4 `lt`
lt :: a -> a -> a
-- | Greater then
infix 4 `gt`
gt :: a -> a -> a

Figure 5.3: Type classes for Booleans, equality and order

The standard Haskell Bool data type is a simple instance of the Boolean type class. The
REDFIN ISA semantics will be able to operate over concrete values (data type in figure 5.4),
which are a partial instance of the Boolean class, forwarding the boolean connectives into
the CBool data constructor and failing with an error in cases of numeric constructors.

-- | Concrete values: either signed or unsigned integers, or booleans
data Concrete where

CInt32 :: Int32 -> Concrete
CWord :: Word16 -> Concrete
CBool :: Bool -> Concrete

Figure 5.4: Concrete values

In the next section, we will define the data type of symbolic expressions, which we will
make an instance of these type classes, alongside with the concrete values.

5.2.3 Symbolic values

A symbolic value is either a concrete value — a wrapper over signed and unsigned integers
or a boolean, or a symbolic expression which may include variables, pointers or symbolic
conditionals. The figure 5.5 defines the algebraic data types of symbolic values. The Sym

99

type has, among others, constructors for arithmetic, equality, order and boolean operations,
and for symbolic variables (SAny), pointers (SPointer) and conditionals (SIte).

-- | Symbolic expressions
data Sym where

SConst :: Concrete -> Sym
SAny :: Text -> Sym
SPointer :: Sym -> Sym
SIte :: Sym -> Sym -> Sym -> Sym
SAdd :: Sym -> Sym -> Sym
SSub :: Sym -> Sym -> Sym
SMul :: Sym -> Sym -> Sym
SDiv :: Sym -> Sym -> Sym
SMod :: Sym -> Sym -> Sym
SAbs :: Sym -> Sym
SEq :: Sym -> Sym -> Sym
SGt :: Sym -> Sym -> Sym
SLt :: Sym -> Sym -> Sym
SAnd :: Sym -> Sym -> Sym
SOr :: Sym -> Sym -> Sym
SNot :: Sym -> Sym

Figure 5.5: Data type of symbolic values

We also implement a number of standard facilities, such as subst function that substi-
tutes a variable for an expression, and others that perform constant-folding and simplifica-
tion (table 5.2).

Name Type Description
subst Sym -> Text -> Sym -> Sym variable substitution
tryFoldConstant Sym -> Sym constant folding

Table 5.2: Programming interface of symbolic values

The Sym data type is an instance of the standard Haskell Num type class to support
numeric literals and arithmetic.
instance Num Sym where

x + y = SAdd x y
x - y = SSub x y
x * y = SMul x y
abs x = SAbs x
signum _ = error "Sym.Num: signum is not defined"
fromInteger x = SConst (CInt32 $ fromInteger x)
negate _ = error "Sym.Num: negate is not defined"

The Boolean instance is defined in a similar way. Having these instances in scope allows
for constructing Sym expressions from shallowly-embedded Haskell expressions, which is

100

much easier than using the deeply-embedded syntax of Sym directly:

> let x = SAny "x" in x `gt` 0 &&& x `lt` 1000
SAnd (SGt (SAny "x" (SConst (CInt32 0)))) (SLt (SAny "x" (SConst (CInt32 1000))))

5.2.4 Memory representation

The data types modelling the REDFIN ISA which will be used for interpreting the fine-
grained state semantics must account for the possible interpretations of the semantics. The
primary, and also the most complicated, interpretation is symbolic execution, which re-
quires a representation of symbolic memory. Therefore, the data types that model memory
addresses must account for both concrete and symbolic representation.

We model the concrete REDFIN memory addresses with a newtype wrapping a value
off type Word8 — an unsigned integer of with 8.

newtype CAddress = CAddress Word8

The concrete memory addresses will be used by the simulation, control-flow analysis
and symbolic execution backends. However, the symbolic execution backend will also re-
quire a symbolic representation of memory addresses to implement the semantics of the
memory-indirect load instruction. Memory-indirect data access require symbolic address
representation since it may introduce symbolic variables into the address expressions by
converting the values stored in memory into addresses. Therefore, we define the general
Address in the following way:

newtype Address = MkAddress (Either CAddress Sym)

An Address is either a concrete memory address — an unsigned integer of width 8, or
a general symbolic expression which may contain symbolic variables. The expressions may
also contain the SAdd and SSub constructors, with one of their arguments being a concrete
offset constant.

In order to convert between integers and memory addresses, we define a type class of
values that can be interpreted as addresses:

class Addressable a where
toAddress :: a -> Maybe Address
fromAddress :: Address -> a

101

and create the appropriate instances for the concrete addresses and values, and symbolic
values.

We will refine the memory model by giving an interpretation to symbolic addresses in
further sections, describing the specific backends.

5.2.5 Instruction and program semantics

In section 3.3.2, we have presented the semantics of several REDFIN instructions in terms
of fine-grained state transformers. We classified the instructions according to their dataflow,
classified by the control argument of the FS type. The instruction of the REDFIN ISA
fall into the following categories of that classification:

• Linear dataflow and the Functor class:

• Static tree dataflow and the Applicative class:

• Selective tree dataflow and the Selective class:

• Dynamic dataflow and the Monad class:

Besides the semantics of the individual instructions, a semantics of an ISA must in-
clude the fetch-decode-execute loop, that enables executing complete programs, rather than
just sequences of instructions. In the coarse-grained semantics (section 3.3.1), we defined
the state transformers Tfetch and Tinc, which represent fetching the next instruction from
program memory and incrementing the instruction counter. As it turns out, the Tfetch

transformer is inherently monadic and is not much different from the semantics of the
memory-indirect load instruction LoadMI (see section 3.3.2.4). Therefore, formulating this
transformer as a fine-grained one brings no benefit: its semantics will depend on the whole
program memory.

The fact that instruction fetching must remain coarse grained does not, however, hinder
the amenability of programs for static analysis if we employ one trick. We would like to
abstract away the instruction-fetching transformer Tfetch and treat the programs as if they
were sequences of instructions. It turns out we can do that, if we pre-process the programs
into a common intermediate representation used in compiles: a control-flow graph (CFG). A
control-flow graph comprises basic blocks of code as nodes and control transfers, i.e. jumps,

102

as edges. Within a basic blocks there cannot be a jump, besides the last instruction in the
block. The control flows into the first instruction of the block and can only flow out from
the last.

5.3 Symbolic execution

We have carefully designed the formalism of the fine-grained state transformers in such a
way so the ISA semantics implemented with them could be formulated independently of its
interpretation. As we have seen earlier in this chapter, the type FS of fine-grained state
transformers is parameterised by a computational context f and by the two callbacks read
and write that govern the access to the context. These parameters are what determines
the interpretation of the transformer. In this section, we present the interpretation which
gives us a symbolic execution engine for REDFIN ISA.

The goal of this section is twofold: (i) we describe the design and implementation of the
symbolic execution backend for fine-grained state transformer semantics of REDFIN ISA;
(ii) we discuss the benefits this design provides over the coarse-grained symbolic execution
framework described in chapter 4.

5.3.1 Memory representation

In previous sections we have discussed the type classes 5.2.2 that provide the shallowly-
embedded values and the data types 5.2.3 that represent the deeply-embedded concrete
and symbolic values and have instances of the interface type classes. We, however, mostly
omitted the representation of the memory locations that will store these values during
simulation and symbolic execution. We discuss the memory representation in detail here.

5.3.1.1 Memory configuration of REDFIN

The REDFIN ISA v2 follows the convention of Harvard Architecture and specifies two
separate address spaces for data and program memory. The figure 5.6, an excerpt from the
REDFIN v2 data sheet, displays the blocks of the core. In this work, our central concern is
the instruction handler and the ALU. Note that we do not model the memory scrubber and

103

System Bus (AMBA AHB)

Instruction Handler &
Arithmetic Logic Unit

Instruction Area

Memory
Controller &

Scrubber

Bus Slave I/F Bus Master I/F

REDFINv2 IP-Core

Data Area

Instruction & Data
Memory

Figure 5.6: REDFINv2 IP-Core block diagram (excerpt from REDFIN v2 data sheet)

the system bus access. Incorporating the bus into the model is an interesting opportunity
for future work.

The REDFIN core VHDL design is parameterised over the bit width of data words,
denoted ABW, ranging form 8 to 64 bits. In our model, we fix the ABW to be 32 bits,
which is the default value. The instruction code width is not configurable in the ISA and
is set to 16 bit. For simplicity, we also fix the address space of the data memory to be 256
words and the program memory address space to 256 instructions. These limits are enough
for our case-studies and can be extended if required.

On core initialisation, all location in the data memory will be set to 0. The program
memory is initialised with zeroes too, and program subroutines are written to it by an
external bus master. We do not model this behaviour, and assume the program memory to
be containing the single subroutine to be executed, terminated by the halt instruction.

In REDFIN v2, a frame pointer register has been added to enlarge the addressable space
of the data memory. We, however, keep the flat addressing mode used in REDFIN v1 in our
model for simplicity. Extending the model to support the frame pointer addressing mode
is considered for the future version of the model.

5.3.1.2 Concrete and symbolic memory addresses

We present the Haskell data types and related functions that implement the memory model
of the verification framework. We omit some details, specifically the parts of the definitions
that specify type class instances derivation for brevity.

104

We represent a concrete data memory address as a 8-bit unsigned integer, wrapped into
a type constructor for additional type safety:

newtype CAddress = CAddress Word8

A symbolic memory address is either a concrete one, or an arbitrary symbolic expression:

newtype Address = MkAddress (Either CAddress Sym)

The Address type needs several type class instances. We only give one of them as an
example here and discuss it in some detail further:

-- | Embed a concrete address
literal :: CAddress -> Address
literal a = MkAddress (Left a)

instance Num Address where
fromInteger x = literal (fromInteger x)
_ + _ = error "Address.Num: + is not defined"
_ - _ = error "Address.Num: - is not defined"
_ * _ = error "Address.Num: * is not defined"
abs _ = error "Address.abs: abs is not defined"
signum _ = error "Address.Num signum is not defined"
negate _ = error "Address.Num: negate is not defined"

This instance enables us to use Haskell’s native integer literals as concrete addresses,
which is very useful in user-facing specifications. Not that we forbid arithmetic operations
on addresses by triggering a runtime error. Instead, the addresses need to be explicitly cast
to an arbitrary symbolic expression (of type Sym) for arithmetic manipulation:

class Addressable a where
toAddress :: a -> Maybe Address
fromAddress :: Address -> a

instance Addressable Sym where
toAddress = Just . MkAddress . Right
fromAddress (MkAddress a) =

case a of
Left (CAddress concrete) -> SConst (CWord $ fromIntegral concrete)
Right sym -> sym

The Addressable type class hadles this casting. By this, we provide strong guarantees
via Haskell’s type system: we make sure that the Num instance of the symbolic expressions
cannot be directly applied to symbolic addresses.

105

The Address type provides the representation for a single memory location. Remember,
that we structure the semantics of the REDFIN ISA as a fine-grained state transformer.
A data memory address becomes a specific kind of a location in the state, not very much
different from other locations. We discuss the representation of states in the next section.

5.3.2 Symbolic execution context

We represent the state of the ISA as a context — a collection of typed variable bindings and
related metadata. The bindings are exactly the type of keys we have been designing the
semantics to work with in section 5.2. When evaluating a fine-grained state transformer,
the context changes according to the transformer’s specification. Concrete execution applies
the effects of a transformer directly and produces a single resulting context on successful
termination. Symbolic execution, on the other hand, produces a (possibly infinite) binary
tree of contexts: a branch in the tree is created by a branching operation in the state
transformer.

Conceptually, the representation of state is not very much different from the set-theoretic
presentation we have seen in section 3.3.1. However, we consider the implementation details
of the verification framework to be the focus of this thesis; therefore, we discuss the Context

data type (figure 5.7) in detail here.
The context should contain the bindings and some additional data to support symbolic

execution. We keep a map of program variables which we call _store: it maps variable
names to symbolic expressions these variable are pointing to. This data structure will be
essential for handling the semantics of indirect memory loads.

The last three components are only required for symbolic execution. The _pathCondition
is a symbolic boolean expression that, for the current context, encodes its reachability from
the initial context. A particular context is reachable if its path condition is a satisfiable
formula. The _constraints are named symbolic boolean expressions that represent the
user-specified or generated verification conditions, for example, restrictions on the ranges
of program variables. Finally, the _solution will be filled in upon calling the external
solver to check satisfiability of the path condition conjoined with the constraints. If the
resulting conjunction is satisfiable, then this particular context is reachable; otherwise it
represents an impossible (under the current constraints) state of execution and its children

106

states should not be explored.

data Context a = MkContext
{ -- | keys (like register names, memory cells) mapped to their (symbolic) values
_bindings :: Map.Map Key a

, -- | A store used for tracking symbolic points-to
_store :: Map.Map Text a

, -- | a boolean formula which must be satisfiable for this state to be reachable
_pathCondition :: a

, -- | a list of named boolean formulas, mostly used as preconditions
-- and conjoined with _pathCondition
-- when checking reachability
_constraints :: [(Text, a)]

, -- | a response from a solver, usually regarding
-- satisfiability of _pathCondition s && conjoin (_constraints s)
_solution :: Maybe SMTResult

}

Figure 5.7: The data type representing the ISA states

Note that the type Context presented in the figure 5.7 is parameterised over the value
type. We would usually instantiate it with the type Sym of symbolic expressions. We
instantiate it with the type Concrete of concrete values in the efficient simulation backend,
but we do not discuss this backend in the thesis. Potentially, the type variable a can be
instantiated with a type representing some abstract domain for abstract interpretation. We
leaved this avenue of research for future work.

As we noted earlier, the _bindings map associates values of type Key to expressions.
We can extract the tracked memory locations form a context like with a selector function:

dumpMemory :: Context a -> [(Address, a)]
dumpMemory = catMaybes . map (uncurry getAddr) . Map.assocs . _bindings

where
getAddr (Addr a) v = Just (a, v)
getAddr _ _ = Nothing

Similar selector functions are implemented to extract other parts of the architecture:
registers, flags, instruction counter, etc.

5.3.2.1 Example: initial state of an array summation program

To perform simulation or symbolic execution of a program, we first need to specify the
initial context. As an example, let us consider the initial state of a case-study program that

107

that calculates the sum of a static array of integers. We first present the state in a generic
set-theoretic notation and then give the Haskell formulation of the corresponding context.

∃n : 0 ≤ n < 253,

∃Xmin, Xmax,

∀i : 0 ≤ i ≤ n,∃xi : Xmin ≤ xi ≤ Xmax

Figure 5.8: A set-theoretic specification of an array of length n

The formula in figure 5.8 specifies an array of a fixed length ranging from 0 to 252
elements. The trailing memory locations will be used as for temporary variables by the
program and thus need to kept unused. The array elements xi are constrained to be in the
range between Xmin and Xmax. The corresponding context specification is more verbose
and includes the initialisation of other requires ISA locations, such as registers, flags and
the program memory (with the program assembled from the source code shown on the
right-had-side):

108

mkInitCtx :: Int32 -> Int32
-> Int32 -> Context Sym

mkInitCtx n xMin xMax =
let (vars, constrs) =

array 1 n (\x -> (SGt x xMin) &&&
(SLt x xMax))

in MkContext
{ _bindings =

Map.fromList $
[(IC, 0)
, (Reg R0, 0)
, (Reg R1, 0)
, (Reg R2, 0)
, (Addr 0, SAny "n")
, (Addr 253, 0)
, (Addr 255, 1)
] ++ vars ++
[(F Halted, false)
, (F Condition, false)
, (F Overflow, false)
] ++
mkProgram sumArrayLowLevel

, _store = Map.empty
, _pathCondition = true
, _constraints = constrs ++

[("n"
, (SGt (SAny "n") (-1)) &&&
(SLt (SAny "n") (n + 1))

)]
, _solution = Nothing
}

1 sumArrayLowLevel :: Script
2 sumArrayLowLevel = do
3 let pointer = 0
4 sum = 253
5 array_start = 255
6 let r0 = R0; r1 = R1; r2 = R2
7 ld r1 pointer
8

9 -- compare the pointer variable
10 -- to array_start
11 "loop" cmplt r1 array_start
12 -- if pointer == array_start
13 -- then terminate
14 goto_ct "end"
15

16 ldmi r2 pointer
17 add r2 sum
18 st r2 sum
19 sub_i r1 1
20 st r1 pointer
21

22 goto "loop"
23 "end" ld r0 sum
24 halt

Figure 5.9: The initial context for the array summation program and the program’s source code

The most important parts to look at here are _bindings, _pathCondition and _constraints.
The _bindings will contain the symbolic variables representing the array elements at loca-
tions 1 through n. The location 0 contains the variable n — the length of the array. We put
the literal 1 in the location 255 to be used as array index. Other locations, such as the three
registers and flags are explicitly initialised with 0 and ⊥. Importantly, the path condition of
the initial context is initialised with >, meaning that the initial context is always reachable.
Finally, the _constraints list will contain the constraints on the array elements and also
the one on n.

So far we have discussed the syntactic machinery that allows specifying the individual
states of execution: configuration of registers, flags and memory. Symbolic execution pro-
duces trees of contexts, which we call symbolic execution traces. We discuss them in the

109

next section.

5.3.3 Execution traces

The program on the right-hand-side of figure 5.9 contains a loop that traverses the array in
reverses order and calculates the sum of the arrays elements. The instruction on line 14 is a
conditional branch, which transfers the control to the label “end” on line 23 if the index in
register r1 reaches the start of the array. Symbolic execution of this program will produce a
tree-shaped trace that encodes a class of concrete executions. Concrete execution scenarios
can be obtained by instantiating symbolic variables that occur in the trace. Let us consider
an example symbolic trace (figure 5.10) with the array length constrained to be 0 ≤ n ≤ 2:
at most two elements. The shape of traces will be similar for larger values of n, and we
consider this small example purely for its didactic purpose. Note that the logic related to
sum calculation is irrelevant for termination analysis. We, thus, exclude these instructions
(lines 16, 17, 18, 20 and 24 after the label “end”) from the trace for brevity.

The program contains a single loop that iterates through the array in the reverse order
of indices and accumulates the sum. The array index is maintained in the register r1 and
the program is halted when the index reaches zero. Before starting the execution, the path
condition is initialised with 0 ≤ n ≤ 2, declaring the range of array lengths we are interested
in. The comparison is performed by the cmplt opcode on line 11, which is followed by a
branch in the execution tree: the left subtree conjoins the positive term n < 1 to the
path condition, and the right subtree conjoins the term’s negation, n < 1. The left subtree
represents by convention, the path of execution when the jump condition is true and thus
the jump is performed; in this case, leading to the successful termination of the program
with the halt instruction on line 24. The right subtree is feasible for n = 1 ∨ n = 2 and
represents the loop body which decrements the array index and again leads to the check
of the termination condition on line 11. The process proceeds iteratively, and the path
condition is conjoined with the terms encoding reachability of the program states. Finally,
when the index reaches n− 2, it is no longer feasible to continue execution, since the path
condition in the right-most subtree becomes unsatisfiable.

110

22

22

2

2

R1 : n
255 : 1
IR : cmplt r1 255

R1 : n - 1
255 : 1
IR : sub_i r1 1

R1 : n - 1
255 : 1
IR : goto "loop"

R1 : n - 1
255 : 1
IR : cmplt r1 255

R1 : n - 1
255 : 1
IR : goto_ct "end"

R1 : n - 1
255 : 1
IR : halt

R1 : n
255 : 1
IR : goto_ct "end"

R1 : n
255 : 1
IR : goto_ct "end"

R1 : n
255 : 1
IR : halt

SAT: n = 0 SAT: n = 1,2

SAT: n = 1

line 11

line 14line 14

line 19

R1 : n - 2
255 : 1
IR : sub_i r1 1

R1 : n - 2
255 : 1
IR : goto "loop"

R1 : n - 2
255 : 1
IR : cmplt r1 255

line 19

line 22

line 11

line 24

R1 : n - 1
255 : 1
IR : goto_ct "end"

SAT: n = 2

line 14

2
2

line 22

line 11

line 14

line 24

R1 : n - 2
255 : 1
IR : halt

SAT: n = 2 UNSAT

R1 : n - 2
255 : 1
IR : goto_ct "end"

line 14

line 24

Figure 5.10: Example symbolic execution trace for program from figure 5.9

Symbolic execution traces are the basis for verification. They contain information about
a class of executions of a program and are the source of answers to all our questions about
the program’s behaviour. However, the traces alone are not enough. By exploring a trace,
we can observe the possible behaviours, but we, however, do not currently have a way of
asking questions about these behaviours.

111

5.3.4 Specification syntax

In order to verify that a symbolic execution trace produced by a program only encodes
good behaviours, we require a language to express what is good. In this thesis, we are
interest in safety and functional correctness properties of REDFIN programs. For example,
we would like to make sure that a certain program never causes an integer overflow, or
that a successfully halted program always returns a result obeying a precise mathematical
specification.

Ultimately, we require a language that allows us to formulate invariants that programs
must obey. Informally, an invariant is a propositional formula that holds in every state the
program could reach. We will give a model for the invariants in terms of symbolic execution
traces in the following section 5.3.5, and justify in more detail its choice. For now, we
restrict ourselves to the presentation of syntax.

5.3.4.1 Invariant syntax

The invariants need to specify properties over possible program executions. The syntax is
two-level, with the top-level terms operating over whole program executions, and the bottom
level terms, or atoms, referring to the ISA states. The top-level terms are conjunctions of
expressions that universally-quantify over program executions. We borrow the notation
of the global modality, G from Computation Tree Logic (CTL)[89] to emphasise that the
enclosed atomic formula must hold always, i.e. for any feasible ISA state in every execution
of the program.

〈Invariant〉 ::= ∀G 〈atom〉
| 〈Invariant〉 ∧ 〈Invariant〉

〈atom〉 ::= 〈key〉
| 〈sym〉
| ¬ 〈atom〉
| 〈atom〉 ∨ 〈atom〉
| 〈atom〉 ∧ 〈atom〉
| 〈atom〉 = 〈atom〉
| 〈atom〉 > 〈atom〉
| 〈atom〉 < 〈atom〉

Figure 5.11: Syntax of invariants and underlying atomic propositions

112

The atomic propositions, in addition to the usual boolean and relational connectives, in-
clude the first two productions for embedding a state key and a literal symbolic expression.
These base productions allow referring to the keys of an ISA state, i.e. registers, mem-
ory locations, etc. and also referencing symbolic expressions which may contain symbolic
variables.

The syntax of invariants could be easily reduced to just the atomic propositions. How-
ever, we argue that retaining the syntactic separation between invariants and the atomic
proposition allows for better ergonomics. Additionally, this separation paves the path to
extension of the logic to CTL, if ever deemed necessary.

5.3.5 Invariant semantics

The invariants (figure 5.11) presented in the previous section are intended to describe the
safety and functional correctness properties of REDFIN programs. To perform verification
of such properties, we need a model of the logic. We choose to give a model in terms
of the symbolic execution traces described in section 5.3.3 and quantifier-free first-order
logic formulas over the theory of bit-vectors, QF_BV, employed by the SMT-LIB [61] solver
interface standard. The QF_BV theory contains the necessary primitives to reason about
fixed-size bit-vectors, and is perfectly suited for ISA-level program verification. By giving
a model in such a way, we effectively reduce the satisfiability problem of invariants to
satisfiability modulo QF_BV theory, which is supported by many major SMT solvers.

The model is implemented as a translation procedure in our verification framework for
REDFIN programs. The implementation details of this procedure lay out of scope of this
thesis, and we, therefore, only give a high-level overview here.

5.3.5.1 Interpreting invariants over symbolic execution traces

As the syntax of invariants (figure 5.11) comprises two parts: (1) the top-level path-
quantified productions, and (2) the underlying atomic formulas. The semantic interpre-
tation is performed for these two constructions. We start with the atomic formulas, that
are interpreted at one particular context that represents a single state. We then plug in
that interpretation into the semantics of the top-level path quantifier.

113

The translation of the atomic proposition is syntax-directed recursive function that elim-
inates the productions of the 〈atom〉 grammar (figure 5.11). The first two productions are
base cases: a key is extracted directly from the current state, and the symbolic expression
is embedded directly. The logical and relational connectives are processed recursively. We
give an excerpt of the implementation that translated an atomic proposition to a semantics
symbolic expression following the aforementioned procedure:

-- | Evaluate an atomic formula at the given state
evalAtom :: Atom -> Context Sym -> Sym
evalAtom atom ctx = go true atom

where
go acc = \case

AKey k -> getBinding k ctx
ASym s -> s
ANot p -> acc &&& not (evalAtom p ctx)
AAnd x y -> acc &&& (evalAtom x ctx &&& evalAtom y ctx)
AOr x y -> acc &&& (evalAtom x ctx ||| evalAtom y ctx)
AEq x y -> acc &&& (evalAtom x ctx === evalAtom y ctx)
AGt x y -> acc &&& (evalAtom x ctx `lt` evalAtom y ctx)
ALt x y -> acc &&& (evalAtom x ctx `gt` evalAtom y ctx)

conjunctions, represented by AAnd constructors, translate to the conjunction operation
(&&&), disjunctions to disjunctions, etc. The bindings of the context keys (AKey construc-
tors) are interpreted by extracting the value associated with that key from the context; in
a well-formed formula, the key-binders will always be direct children of relational construc-
tors AEq, AGt and ALt. In case an embedded symbolic expression (ASym constructor) is
encountered, it is interpreted without change.

The interpretation of the top-level syntax requires interpreting two cases:

• the ∀G (for all, globally) quantifier translates into a conjunction of its atomic child
formula over the whole trace;

• the path-level conjunction is the only recursive production that is recursively translated
to the semantic conjunction of its children.

We do not present the complete implementation of the translation to avoid cluttering
the presentation with too many low-level details.

114

5.3.5.2 Interfacing with an off-the-shelf SMT solver

After invariants have been eliminated into first-order formulas over QF_BV, we prepare them
for SMT solving. To check the validity of a formula we check satisfiability of its negation.
Since the formulas we construct will always be large conjunctions of terms, the negation, by
De Morgan’s law, will be a disjunction. We take advantage of multicore processors by we
splitting the disjunction into sub-terms and invoking several instances of the solver for them
separately. If any solver returns SAT, then we have a counterexample to the initial formula’s
validity. Otherwise, all solvers return UNSAT, and thus the formula is valid. A solver may
also return UNKNOWN, indicating that it got stuck. In this case, the initial specification may
be reduced to construct a less difficult property.

5.3.6 Case-study: stepper-motor control program

Many programs targeting REDFIN share the distinctive feature of the energy estimation
program considered in section 4.3.1, i.e. the existence of an upper bound on execution time,
since their termination does not depend on input data. However, other programs may have
a loop which is guarded by a termination condition that involves computation considering
the input parameters of the program, thus making the loop unbounded.

Presence of unbounded loops makes program verification by symbolic execution consid-
erably harder [54, p. 50:20], since the number of program execution paths becomes infinite.
In this section we consider an example of a control program that drives a stepper motor
and verify several of its essential safety properties.

5.3.6.1 Motor Control Algorithm

Stepper motors are often deployed as parts of antenna and solar panel pointing units in
space satellites. We consider a program for controlling a motor with one degree of freedom.
The algorithm takes three input parameters:

• dist — the distance to move the motor,

• vmax — the maximal permitted velocity,

• amax — the maximal permitted acceleration

115

and computes a series of displacement and velocity values that will be used to move the
motor. Since the algorithm is designed for controlling a stepper motor, the calculations
happen in discrete time, i.e. every iteration of Algorithm 1 corresponds to a time interval;
thus the deceleration (i.e. braking) distance is computed as

sdecel = amax ·
decel_steps · (decel_steps + 1)

2
,

where decel_steps = v
amax

is the number of decelerating iterations needed for a full stop.
The conditional statement on line 9 decides whether to accelerate, to keep the velocity,

or to decelerate; see Fig. 5.13 for example plots of velocity and distance travelled against
time. The spike at the bottom-right of the velocity plot illustrates the edge case covered by
the conditional statement on line 18: if the velocity is zero, but the target distance has not
yet been reached, the motor must be moved further.

116

Algorithm 1 Motor Control Algorithm
Input: dist, vmax, amax

1: s← 0
2: v ← 0
3: while true do
4: decel_steps← v/amax ▷ Compute deceleration distance
5: sdecel ← amax · decel_steps · (decel_steps + 1)/2 ▷ based on the current velocity
6: if decel_steps · amax 6= v then
7: sdecel ← sdecel + v

8: vnext = min(vmax, dist, v + amax)
9: if s + sdecel + vnext ≤ dist then

10: v ← vnext ▷ Accelerate
11: else if s + sdecel + v ≤ dist then
12: v ← v ▷ Keep velocity
13: else ▷ Decelerate
14: if v > decel_steps · amax then
15: v ← decel_steps · amax

16: else
17: v ← v − amax

18: if v = 0 then
19: if s 6= dist then ▷ Accelerate again to reach target
20: v ← min(dist− s, amax)
21: else
22: break ▷ Terminate execution
23: s← s + v

To deploy Algorithm 1 to REDFIN, it has been manually implemented in REDFIN
assembly. The resulting assembly program comprises 85 lines of code and closely mirrors the
high-level pseudocode. Figure 5.12 shows a fragment of the program’s symbolic execution
trace that corresponds to the decision whether to accelerate, keep the velocity, or decelerate
the motor.

Figure 5.12: Symbolic execution trace of a code fragment with conditional branching.

The decision is performed by computing the resulting total distance travelled from start
to stop, based on the action taken in the current time step. First, the total distance is

117

computed if the motor were to accelerate for one more time step and then decelerate in
the subsequent time steps. If the computed total distance is less than or equal to dist, the
decision to accelerate is committed. Otherwise, the algorithm checks whether the targeted
distance can be met by maintaining the current velocity for one more time step. If even
that would cause an overshoot, the decision for immediately commencing deceleration is
taken. Fig. 5.13 illustrates this decision process by plotting the velocity and distance over
time for a specific simulation run.

Figure 5.13: Velocity (v) and distance travelled (s) plotted against time (t)

5.3.6.2 Program termination and arithmetic safety

Mission-critical control programs are often specifically designed to satisfy a number of safety
properties. Recall, the REDFIN core is intended to be deployed as part of subsystem of a
space satellites. The satellite will usually have a conventional processing core which would
serve as a master node, controlling the subsystems. In case of REDFIN the master node
will trigger execution of subroutines, such as Algorithm 1. The termination of any REDFIN
program will, by design, be controlled by the master node. We therefore verify partial
correctness. i.e. prove that the program satisfies the invariant if it terminates.

We now describe the process of using the verification framework developed in this thesis
to verify that the arithmetic operations involved in the algorithm Algorithm 1 do not trigger
integer overflow and division by zero exceptions.

Arithmetic safety
Mission-critical control programs must be verified of absence of arithmetic errors under

well-defined constraints. In section 4.3.1, we have verified the arithmetic safety of an energy
estimation program. We now formulate a similar invariant:

∀G (Overflow = ⊥ ∧ DivisionByZero = ⊥) (5.1)

which states that “for all execution paths, the flags Overflow and DivisionByZero should
be always unset”.

To check the invariant (5.1), we need to employ the methodology described in sec-
tion 5.3.5: symbolically execute the program from a well-formed initial state and then

118

evaluate the invariant property on that trace. However, in the specific case of Algorithm 1,
we need to employ an additional technique.

One may notice that the control-flow structure of Algorithm 1 is very simple: it is an
iterative process governed by one top-level unconditional while loop (line 3) and a single
break point (line 22). We can be sure that the loop will be executed at least once, but, unfor-
tunately, we do not have any syntactic termination guarantees. The termination condition
of this loop depends on symbolic program variables, specifically v, s and dist. While the
value of dist is an input parameter of the algorithm and is fixed during symbolic execution,
the other two variables will be modified at every iteration. In other words, the amount of
iterations of the loop cannot be statically predicted and is potentially infinite 1. Automatic
verification of unbounded loops remains out of the scope of this thesis. We, however, can
still perform verification of some safety properties of Algorithm 1 by considering a generic
iteration of the top-level while loop.

5.3.6.3 Loop Invariant Verification

We mitigate the difficulties that the unbounded loop of Algorithm 1 poses to symbolic
execution-based verification by considering an execution of an arbitrary iteration of this loop.
By considering only one iteration, we unfortunately cannot verify functional correctness of
the whole algorithm, but we can still achieve verification of safety properties like (5.1) and
of more domain-specific ones.

In order to ensure that the motor will not introduce disturbances and will not lead the
whole unit out of its normal mode of operation, the velocity and acceleration of the motor
must be kept within safe limits. This verification condition is motivated by the correctness
requirements of the whole space satellite unit.

More formally, the verification condition means that at any iteration t of the loop the
values of the expressions vt, velocity, and |vt

next − vt|, acceleration, must never exceed the
parameters vmax and amax, respectively.

This property is the loop invariant for the motor control program which ensures that
velocity and acceleration always stay within their safe bounds. We formalise this invariant

1If we consider the whole integer domain. If we restrict ourselves to machine integers, the potential amount of
iterations is bounded, but is still large.

119

as follows:

∀G vmax amax v vnext, v ≤ vmax ∧ |vnext − v| ≤ amax (5.2)

the property quantifies over all program states via the “all-globally” path quantifier ∀G
and states that any state the stability condition must hold, i.e. the current velocity and
acceleration must never exceed the maximum allowed ones.

Recall that we are allowing the top-level syntax of invariants to include conjunctions of
path-quantified atomic formulas. We thus can combine the stability condition (5.2) with
the one formalising arithmetic safety (5.1):

∀G vmax amax v vnext, v ≤ vmax ∧ |vnext − v| ≤ amax

∧ ∀G (Overflow = ⊥ ∧ DivisionByZero = ⊥)
(5.3)

this combined property reads as follows:

• at any step, the velocity and acceleration must stay within bounds, and

• at any step, the Overflow and DivisionByZero flags must be unset

By verifying the property (5.3) for an arbitrary iteration of the loop, we will be able to
conclude that any execution of the whole program satisfies it.

120

Chapter 6

Tool support

Alongside the research contribution of this thesis, we also provide a prototype software suite
for developing, specifying and verifying REDFIN programs. The suite includes two libraries
that describe the semantics of REDFIN ISA in terms of monadic state transformers and
fine-grained store, and a Web-based IDE.
We propose two workflows to interact with the software suite:

• The libraries provide a module that could be used as an EDSL for developing REDFIN
programs, specifying their behaviour and proving conformance to the specifications by
symbolic execution.

• The IDE could be used for the same activities as the EDSLs, and additionally for
interactive exploration of program symbolic execution trees and states.

We now describe the architecture of both the EDSL and the IDE, and provide sample
interaction sessions.

6.1 Redfin Assembly

In this section we discuss the implementation of a simple assembly EDSL which facilitates
programming the REDFIN sequencer by providing human-readable mnemonics for the in-
structions and an additional syntactic feature of labels for program locations with support

121

for forward and backward conditional jumps. In the implementation of the assembler we
showcase an advanced feature of Haskell’s type system, i.e. the support for type-level nat-
ural numbers, to achieve compile-time correctness verification of embedding opcodes and
instruction arguments into the instruction code, thus eliminating possible bitvector width-
related bugs.

The assembler translates a human-readable script of instruction mnemonics and goto-
statements into a sequence of machine codes; to achieve this, the assembler performs the
following two passes over the input script:

1. First, the assembler accumulates the labels and resolves them into pairs of the la-
bel’s name and their corresponding instruction counter location. For example, if a
label "loop" is located at line 42 of the script, it is going to be resolved into a pair
("loop", 42). The pairs are then arranged into a table for use in the second pass;

2. Second, the assembler translates every mnemonic in the input script into the corre-
sponding instruction code and substitutes the goto-statements with the appropriate
jump instructions with the offsets resolved according to the label table. The resulting
sequence of machine codes is ready for being plugged into the REDFIN model.

The assembler is a stateful computation that needs to keep track of the current value of
the instruction counter, the labels table and the machine code being constructed: the Script

type (fig. 6.1) denotes exactly that by using the already familiar state monad abstraction.

data AssemblerState = MkAssemblerState
{ program :: [(InstructionAddress, InstructionCode)]
, labels :: Labels
, instructionCounter :: InstructionAddress
}

type InstructionAddress = SymbolicValue (WordN 10)
type InstructionCode = SymbolicValue (WordN 16)

type Labels = Map String InstructionAddress

type Script = State AssemblerState ()

Figure 6.1: Assembly EDSL types

The individual instruction mnemonics are now expressed as computations of type Script,

122

which construct instruction codes as bitvector concatenation of the opcode and the argu-
ments, and then append the result to the machine code sequence. Figure 6.2 demonstrates
the mnemonics for addition, loading of a signed immediate value into a register and a con-
ditional jump. The (#) infix operator ensures the compatibility of bitvector sizes, i.e. that
the opcode (of length 6) and the instruction arguments add up to a bitvector of length 16
(the instruction code length); moreover, since some instructions expect signed immediate
arguments (in two’s complement representation), we must convert the arguments into un-
signed words with fromSigned to persuade GHC’s type system that we know what we are
doing. Note that fromSigned only changes the type of the argument and does not actually
change the underlying value. Later in the pipeline, the instruction decoder will perform the
reverse operation.

add :: Register -> MemoryAddress -> Script
add rX dmemaddr = instruction (0b000100 # rX # dmemaddr)

ld_i :: Register -> UImm8 -> Script
ld_i rX uimm = instruction (0b101111 # rX # uimm)

jmpi_cf :: SImm10 -> Script
jmpi_ct simm = instruction (0b110001 # fromSigned @10 simm)

instruction :: InstructionCode -> Script
instruction c = do

s <- get
let ic = instructionCounter s
put $ s { program = (ic, c):program s

, instructionCounter = ic + 1}

Figure 6.2: Example mnemonics

The types of fromSigned and (#) (Fig.6.3) are lightweight specifications for the behavour
of these functions, containing information on signess and size of the bitvector arguments.
The type of fromSigned constrains the type variable n to be a non-zero natural number1 and
ensures that if the input is a signed bitvector of size n, then the output will be an unsigned
bitvector of the same size. The other function, (#), implements bitvector concatenation,
and operates on both signed and unsigned betrverctors of non-zero length. The function’s
type ensures that the bitvectors have matching signess and that the size of the result is
exactly the sum of the arguments’ sizes. The SymVal typeclass from Data.SBV abstracts

1using the type classes from GHC.TypeNats module

123

the types IntN, WordN and other, non-bitvector, types of symbolic values.

fromSigned :: (KnownNat n, IsNonZero n) => SBV (IntN n) -> SBV (WordN n)

(#) :: (IsNonZero n, IsNonZero m, KnownNat n, KnownNat m
, SymVal (bv n), SymVal (bv m)) =>
SBV (bv n) -> SBV (bv m) -> SBV (bv (n + m))

Figure 6.3: Type-safe bitvector combinators

type Opcode = SymbolicValue (WordN 6)

type UImm8 = SymbolicValue (WordN 8)

type SImm10 = SymbolicValue (IntN 10)

type Register = SymbolicValue (WordN 2)

type MemoryAddress = SymbolicValue (WordN 8)

Figure 6.4: Recap of symbolic types used as mnemonics’ arguments

As we saw in this section, embedding an assembly language into Haskell allows for a short
and easy-to-maintain implementation which provides some correctness guarantees thanks
to the Haskell’s type system.

Assembly is great for implementing bespoke performance-tuned algorithms, especially for
such resource-constrained environment like spacecraft control. However, we aim our model
to be suitable not for programming new procedures, but rather for formal verification of
the existing control programs targeting REDFIN. For verification to be possible, there must
be means to specify the properties to be verified, and the next section describes another
EDSL that we use for exactly this purpose: to specify functional properties of REDFIN
programs.

6.2 Compiler for a language of expressions

As mentioned earlier in this thesis, REDFIN stands for “REDuced instruction set for Fixed-
point and INteger arithmetic”; thus, a major verification task is making sure that we get
our arithmetic right. In this section, we address this concern by developing the Expression
EDSL — a simple language for arithmetic expressions that compiles to REDFIN assembly

124

and can be used for both implementing REDFIN programs and as a specification language
for describing the functionality of hand-written assembly in a clear and concise way. The
language will be used in conjunction with the facilities provided by SBV.

Consider the following simple spacecraft control task:

Let t1 and t2 be two different time points (measured in ms), and p1 and p2 be
two power values (measured in mW). Calculate the estimate of the total energy
consumption during this period using linear approximation, rounding down to the
nearest integer:

energyEstimate(t1, t2, p1, p2) =
⌊ |t1 − t2| ∗ (p1 + p2)

2

⌋
.

This task looks too simple, but in fact it has a few pitfalls that, if left unattended, may lead
to the failure of the space mission. Examples of subtle bugs in seemingly simple programs
leading to a catastrophe include 64-bit to 16-bit number conversion overflow causing the
destruction of Ariane 5 rocket [3] and the loss of NASA’s Mars orbiter due to incorrect unit
conversion [4].

Let is describe the infrastructure required to write down formulas like this one in a subset
of Haskell that we will be compiling to REDFIN assembly. The Expression EDSL comprises
three roughly-defined components:

• Deeply-embedded abstract syntax of expressions

• Shallowly-embedded concrete syntax which allows to re-use Haskell’s arithmetical no-
tation

• A compiler from the deeply-embedded syntax into REDFIN assembly

6.2.1 Abstract Syntax of Expressions

The standard way of representing an abstract syntax in Haskell is by encoding the grammar
as an algebraic data type. For our simple case, we need a type with four constructors
(fig. 6.5): (i) integer literals, which will be compiled into signed immediate arguments; (ii)
variables referring stored at a particular memory address; (iii) Binary operators, which

125

abstract instructions such as add and mul; and (iv) the last constructor to represent the
only unary operation abs.

data Expression = Lit Literal
| Var Variable
| Bin BinaryOperator Expression Expression
| Abs Expression

newtype Variable = MkVariable MemoryAddress

newtype Literal = MkLiteral SImm8

type BinaryOperator = Register -> MemoryAddress -> Script

Figure 6.5: Abstract syntax of the Expression language

It is possible to construct expressions directly as values of the Expression type. For
example, an expression x+1 may be represented as Bin add (Var 0) (Lit 1), supposing
that the variable named x is stored at memory location 0. However, it is clear that using
the abstract syntax directly is cumbersome and counter-intuitive. Fortunately, there is an
easy way to enrich the Expression EDSL to make it more convenient.

6.2.2 Reusing Haskell’s syntax as concrete syntax

Haskell provides EDSL developers with an easy way to employ its own constructions of arith-
metical operations, let-binding and other syntactic constructions via the type class mecha-
nism. By defining the Expression type an instance of the Num class, which abstracts the
arithmetical operations, we obtain a shallowly-embedded domain-specific language (DSL)
for constructing expressions:

instance Num Expression where
fromInteger = Lit . MkLiteral . fromIntegral
(+) = Bin add
(-) = Bin sub
(*) = Bin mul
abs = Abs
signum x = x `Prelude.div` Prelude.abs x

Figure 6.6: Shallow embedding of Expression into Haskell

With this embedding, we can reuse Haskell’s let-binding to enrich ourselves with named
variables for free, and construct the example expressions as let x = Var 0 in x + 1.

126

However fancy we make the syntax, it is still useless without semantics. In the next
section, we will describe the translation of the expression terms into REDFIN assembly.

6.2.3 Compiling Expressions to Assembly

To be able to use the Expression EDSL as intended, we need to be able to translate it
somehow into REDFIN assembly, or, more precisely, to implement a function of type
Expression -> Script, which would enable us to perform simulation, testing and sym-
bolic execution of the compiled Expressions just like if they were hand-written REDFIN
assembly programs.

As we mentioned already, REDFIN is intentionally designed to be as simple as possible,
to facilitate verification. This, however, puts us, as compiler developers, into a constrained
position, since the ISA does not provide as with neither stack nor memory allocation. In
order to compile a generic Expression into assembly, we need to emulate the stack and
a rudiment temporary memory allocation system of only one cell. We will also need to
purpose one of the REDFIN’s registers for our needs.

newtype Temporary = MkTemporary { fromTemporary :: MemoryAddress }

newtype Stack = MkStack { _pointer :: MemoryAddress }

data CompilerEnv = MkCompilerEnv { _reg :: Register
, _tmp :: Temporary
, _stack :: Stack
}

Figure 6.7: Embedded compiler infrastructure

6.2.3.1 Stack emulation

A stack is a last in, first out (LIFO) data structure that has numerous applications in
computer science: from graph algorithms to programming languages, to low-level data
buffers . In computer engineering, the stack usually refers to the call stack — a data
structure that is maintained by the ISA implementation to keep track of the subprogram
calls and their arguments, but can be used for other purposes too. Now, since the REDFIN
ISA does not provide subprograms, the call stack is not needed; hence the architecture does
not provide one.

127

To compile a generic Expression, we essential treat the possible arithmetic operations
as inline subroutines, hence we need to be able to supply them with their arguments, and
emulating a basic call stack is the conventional way to achieve that.

push :: Register -> Stack -> Script
push reg (MkStack pointer) = do

stmi reg pointer
ld reg pointer
sub_si reg 1
st reg pointer

pop :: Register -> Stack -> Script
pop reg (MkStack pointer) = do

ld reg pointer
add_si reg 1
st reg pointer
ldmi reg pointer

type BinaryOperator = Register -> MemoryAddress -> Script

applyBinary :: CompilerEnv -> BinaryOperator -> Script
applyBinary (MkCompilerEnv reg (MkTemporary tmp) stack) op = do

pop reg stack
st reg tmp
pop reg stack
op reg tmp

Figure 6.8: Embedded compiler infrastructure

The function applyBinary (fig. 6.8), expects its two arguments to be located on the
stack: placing them there is the responsibility of the compilation function discussed further.
We abstract binary operations as computations of type Register->MemoryAddress->Script

since all binary operations in REDFIN, such as add, mul and others, require their first ar-
gument to be in a register, the second in the memory, and they store the result in the
register. To generate the code applying the operation, we pop the arguments from the stack
into the register and memory cell provided by the compiler environment, and then inline
the code of the operation. The functions push and pop are the ones emulating the stack:
they are implemented in terms of REDFIN assembly mnemonics, and the implementation
is automatically inlined into the compiled script.

Before we further discuss the implementation of the compiler, consider an example of
a program that adds to numbers (fig. 6.9) with an Expression shown on the left, and the
corresponding compiled assembly on the right:

128

addHaskell :: Num a => a -> a -> a
addHaskell x y = x + y

addHighLevel :: Script
addHighLevel =

let x = varAtAddress 0
y = varAtAddress 1

in compile (addHaskell x y)

ld_i 0 253
st 0 254
// R0 ← x
ld 0 0
// push x
stmi 0 254
ld 0 254
sub_si 0 1
st 0 254
// R0 ← y
ld 0 1
// push y
stmi 0 254
ld 0 254
sub_si 0 1
st 0 254

// pop R0 y
ld 0 254
add_si 0 1
st 0 254
ldmi 0 254
// tmp ← y
st 0 255
// R0 ← pop x
ld 0 254
add_si 0 1
st 0 254
ldmi 0 254
// R0 ← x + y
add 0 255
halt

Figure 6.9: An Expression and the corresponding assembly

The addHaskell function on the left is just an alias for the addition operation from
the Num type class, and addHighLevel is the definition that emits the assembly program
on the right by specifying the location of the input variables in memory and compiling the
expression.

The assembly program on the right may seem as is too long for a one that just adding two
numbers, so let us take a closer look to see what is going on. The first two lines initialise the
stack by putting the stack pointer into the memory cell 254. Remember that applyBinary
will pop both arguments from the stack, thus they need to be pushed there before (lines
5–16) by the compiler. After that, applyBinary specialised to the operation add is inlined:
we pop y and store it at the temporary memory location tmp (located by default at address
255), pop x into the register R0 and finally the add instruction performs the addition.

Let us now explain the implementation of the compile function which does most of
the hard work for us. The core functionality is implemented by the compileExpr function
(fig. 6.10), which recursively traverses the expression tree and compiles it into assembly. The
leaf nodes are literals that translate to signed immediate arguments (line 4) and variables
referring to memory addresses (line 5). Binary operators (lines 6–11) are compiled by
compiling their arguments first, pushing the results (always ending up in the register) onto
the stack and applying the operation with applyBinary. Same is done for the only unary
operation Abs.

129

compileExpr :: CompilerEnv -> Expression -> Script
compileExpr env@(MkCompilerEnv reg tmp stack) expr =

case expr of
Lit (MkLiteral value) -> ld_si reg value
Var (MkVariable var) -> ld reg var
Bin op x y -> do

compileExpr env x
push reg stack
compileExpr env y
push reg stack
applyBinary env op

Abs x -> do
compileExpr env x
abs reg

Figure 6.10: Compiling Expressions to assembly

To implement the rest of the compile function it is now enough to prepare the compiler
environment by laying out the necessary tools (stack, temporary variable and register) in
the memory and then calling compileExpr:

compile :: Expression -> Script
compile expr = do

let init_pointer = _pointer (_stack defaultEnv) - 1
ld_i r0 init_pointer
st r0 (_pointer (_stack defaultEnv))
compileExpr defaultEnv expr
halt
where defaultTmp :: Temporary

defaultTmp = MkTemporary maxBound

defaultStack :: Stack
defaultStack = MkStack (maxBound - 1)

defaultEnv :: CompilerEnv
defaultEnv = initCompiler r0 defaultTmp defaultStack

Figure 6.11: Compiling Expressions to assembly

We place the temporary variable at the very end of the memory (maxBound of type
MemoryAddress), and the stack pointer in the one before. Lines 3–4 initialise the stack
pointer by putting the top of the stack into cell maxBound - 2 and correspond to the lines
1–2 of the example program in fig.6.9. Our emulated stack “grows” from higher memory
addresses to lower, but there is little opportunity for data corruption, since the stack will
never grow bigger then two elements; however the user of the compiler needs to make sure

130

that they do not place the data into the five last cells of the memory.

6.3 Integrated Development Environment

In this section, we describe the Integrated Development Environment (IDE) for specifying
and verifying REDFIN programs. We propose to use the IDE as the more user-friendly
alternative to the low-level library interface of the verification framework. In fact, the IDE
directly uses the framework itself as a Haskell library, and builds an interactive interface for
program verification.

6.3.1 Motivation

Formal software verification requires the verification engineer to reason about all potential
execution scenarios of the program under consideration. While the process of specification,
i.e. developing a list of properties that the program needs to adhere too, is a creative pen-
and-paper task, the consecutive tool-assisted verification of these properties can, in fact, be
a cumbersome exercise. The process gets even more difficult if the program being verified
poses a computationally hard task for the automated verification tool: every run of a tool
can take hours. Therefore, it is desirable to make the verification process as interactive as
possible, especially in the early stage of translating the informal human-produced statements
into the formal language of the tool.

In case of symbolic execution-based tools, this interactivity manifests primarily in the
ability to use the tool similarly to a traditional step-wise debugger. However, traditional
debuggers step through only one specific program execution path, while a symbolic debugger
must provide a way to interactively explore all feasible paths, and clearly display the path
reachability conditions. A natural way to present this process to the user is by providing
a tree diagram of the symbolic execution trace, together with the functionality to focus
on a state and to continue execution from that state, generating all feasible child states.
We discuss these features implemented in our verification IDE for REDFIN further in this
section.

131

6.3.2 IDE features

The IDE provides the following features:

• loading of a REDFIN program from a user-supplied source code file;

• specification of the initial ISA state for the program;

• specification of symbolic constraints to perform the execution under;

• formulation of an invariant to verify;

• interactive exploration of the symbolic execution trace with the ability to pause and
continue the execution from an arbitrary discovered state;

• support for saving work in form of projects for persistence.

We now proceed to a demonstration of the IDE user experience by considering the
specification and verification process of two case-study REDFIN programs we have already
discussed earlier in this thesis. We will present adapted excerpts from the IDE’s interface
and descriptions of contents of the individual widgets.

6.3.3 Demonstration: array sum program

We have already presented a verification case-study of a simple program to calculate the
sum of an array in section 4.3.2. In that section, we have used the coarse-grained monadic
semantics and the associated verification framework (see Chapter 4), via the framework’s
Haskell library interface. We now consider the same program, but use instead the verification
framework based on the fine-grained semantics (discussed in Chapter 5), and the interactive
IDE interface, which is the main subject of this section.

In this verification case-study, we are interested in total safety, i.e. that the program
always terminates and the execution never causes the REDFIN core to panic. While the
general safety condition for a REDFIN program would specify the absence of arithmetic
overflow, division by zero, invalid data memory access, invalid program memory access and
a number of other conditions, we can simplify it considering the operations that are actually
used in the program.

132

1 sumArrayLowLevel :: Script
2 sumArrayLowLevel = do
3 let pointer = 0
4 sum = 253
5 array_start = 255
6 let r0 = R0; r1 = R1; r2 = R2
7 ld r1 pointer
8

9 -- compare the pointer variable
10 -- to array_start
11 "loop" cmplt r1 array_start
12 -- if pointer == array_start
13 -- then terminate
14 goto_ct "end"
15

16 ldmi r2 pointer
17 add r2 sum
18 st r2 sum
19 sub_i r1 1
20 st r1 pointer
21

22 goto "loop"
23 "end" ld r0 sum
24 halt

∀G (Overflow = ⊥
∧ InvalidMemoryAccess = ⊥
∧ InvalidJump = ⊥)
∧∀F (Halted = >)

Figure 6.12: The array summation program and its total safety condition

The figure 6.12 presents the program source code alongside with its total safety specifica-
tion. The specification requires all execution states to not have overflow (can arise from add

or sub_i), invalid memory access (ld, ldmi or st can cause that) or invalid jump (may be
triggered by goto and goto_ct), and all execution paths have to end eventually terminate,
i.e. have the Halted flag set.

The figure 6.13 presents the IDE interface displaying successful verification of the sum of
three symbolic numbers. The program executed for at most 100 steps is checked to satisfy
the property G (![Overflow]) && F ([Halted]) (specified in the “Verifier” widget); in
addition, the data and program memory safety are checked implicitly by the engine, adding
up to the property from figure 6.12.

133

Figure 6.13: Total safety for sum of three numbers

The left-hand-side of the IDE window contains the “Initial State” and “Constraints”
widgets, which are used to populate the ISA state with concrete and symbolic data and to
specify symbolic constraints on program variables. For this example, we place the symbolic
program variable n at address 0, and variables x1, x2 and x3 at address 1, 2 and 3. We
constrain n to range from 0 to 3, and the array elements to range from 1 to 999:

134

(x1 > 0 ∧ x1 < 1000)

∧ (x2 > 0 ∧ x2 < 1000)

∧ (x3 > 0 ∧ x3 < 1000)

∧ (n >= 0 ∧ n <= 3)

These constraints are considered when checking reachability of states during symbolic
execution. When verifying invariants, like the one in figure 6.12, the constraints become
a conjunct in the atomic formulas inside path quantifiers. While widening the range of n
would require us to specify more array elements, the constraints on the elements themselves
can be widened if needed. The trace contains branches that are predicated on the value of
n: with the left sub-tree always leading to a halt when n becomes zero.

The user is free to focus on any state in the trace an observe the ISA state and the
program variables in the “State” widget on the right-hand-side. Additionally, the “State”
widget shows an assignment of the program variables that can stir the execution into this
state, enabling the user to use it in a unit-test.

Determining safe bounds for program variables is essential for successful verification.
Consider the figure 6.14, where we remove the constraint on x3 and re-run verification. The
system reports that the invariant becomes falsifiable at states 19, 20, 30 and 31. We examine
the state 19 (on the right-hand-side), and see that the execution of the add instruction on
line 5 may lead to an overflow of the following constraint is satisfied:

Overflow =(&a1 > 0 ∧ &a2 > (2147483647 − &a1))

∨ (&a1 < 0 ∧ &a2 < (−2147483648 − &a1))

This constraint looks rather cryptic since it mentions the generated pointer variables
a1 and a2 which are produced by the symbolic memory access. These variables can be
resolved by looking at the “Symbolic store” section. To check this constraint for satisfiability,
the system resolves the pointers and conjoins the path condition, generating the following

135

formula:

Overflow =((x3 > 0 ∧ x2 > (2147483647 − x3)) ∨ (x3 < 0 ∧ x2 < (−2147483648 − x3)))

∧ (x1 > 0 ∧ x1 < 1000) ∧ (x2 > 0 ∧ x2 < 1000)

∧ (x2 > 0 ∧ x2 < 1000) ∧ (n >= 0 ∧ n <= 3)

Note the absence of constraint on x3: this is the reason the overflow is possible in this
case.

Figure 6.14: Removing the constraints on the third number causes the addition in state 19 to
overflow

136

We have presented a demonstration of the IDE’s functionality on a small instance of
the array sum verification problem. The IDE is applicable to larger problems, including
arbitrary-sized arrays and the stepper-motor control program discussed in the previous
chapter.

We now briefly discuss the implementation of the IDE and how it communicates with
the REDFIN verification framework.

6.3.4 IDE Implementation Overview

Figure 6.15: IDE and backend modules

The REDFIN IDE presents a user-friendly, visual and interactive interface to the underlying
verification framework. The figure 6.15 displays a high-level diagram of the IDE and its
connection to the verification framework. The yellow blocks are visible to the user in the IDE
interface, and the blue ones are hidden. The control unit reads the user input in the form
of a property to verify, the initial ISA state and constraints, and an assembly program. The
control unit communicates with the verification framework to obtain a symbolic execution

137

trace of the program up to some depth and present it to the user. The user then has an
opportunity to interactively explore the trace interactively and perform further execution
from a particular leaf-state if required. Alternatively, the user can alter the input parameters
and receive a new trace.

The verification framework comprises three large components: the ISA semantics, the
symbolic execution engine and an external SMT solver connection. We refer the reader to
chapters 4 and 5 for the design and implementation details.

138

Chapter 7

Conclusions and future work

7.1 Summary of contributions

This thesis describes a number of techniques, both existing and novel, and their application
to formal verification of ISA-level programs. Our main case-study considers REDFIN — a
specialised instruction-set architecture for subsystems of space satellites, and we verify a
number of control programs targeting REDFIN. As the basis for formal verification, we build
the semantics of REDFIN ISA — a formal and executable specification of the architecture’s
behaviour: what comprises the ISA state and how programs are executed. We use the same
semantics for several purposes: a concrete execution backend for testing and simulation; a
symbolic execution backend for formal verification; and also a number of static analyses.

We repeat the list contributions as already outlines in the Introduction:

7.1.1 Contributions

We instantiate the generic verification framework for the REDFIN ISA by providing the
following:

• Semantics of REDFIN instruction set architecture implemented as a EDSL in Haskell;

• A tool chain for developing REDFIN programs comprising an assembler and a set of
command-line tools for program simulation and testing;

139

• A specification language for functional properties of REDFIN programs that compiles
to REDFIN assembly;

• A symbolic execution engine for REDFIN programs that supports verification of pro-
gram equivalence, safety and liveness properties of programs and Worst-Case Execu-
tion Time analysis;

• An IDE that provides a single point of entry to the developed tools and an interactive
explorer for symbolic execution traces and verification results.

Alongside that, the thesis contributes two novel functional programming techniques:

• Selective Applicative Functors [16] provide an abstraction for effectful computations
with limited dynamic dependencies. The Haskell implementation of the verification
framework for REDFIN uses Selective Applicative Functors in its symbolic execution
engine;

• Fine-grained store abstraction is used as the metalanguage for defining the semantics
of instructions in a way that allows multiple interpretations of the same semantics:
efficient simulation, symbolic execution and static analysis.

The work presented in this thesis has a number of limitations. In the following sections
we discuss the avenues of future work we consider to be most interesting and potentially
fruitful.

7.2 Future work: application to other architectures

Our verification framework is not tied to one particular ISA, and can be instantiated to
other instruction sets by implementing the relevant ISA-specific modules.

We see the emerging blockchain platforms as a promising domain for applying formal
methods in general, and our framework in particular. Contemporary blockchain networks,
such as, for example, Ethereum [17] and Algorand [18], provide infrastructure for develop-
ing smart contacts — decentralised applications that are stored on the blockchain. These
applications are executed as part of the network’s consensus algorithm and therefore bene-
fit from security and censorship-resistance of the networks blockchain. The execution layer

140

of blockchain networks most often comprises a bytecode-style virtual machine akin to the
Java Virtual Machine [90] with a number of domain-specific primitives. Importantly, the
bytecode of the virtual machine will often be designed with an emphasis on program cor-
rectness, which makes it a fertile soil of formal methods-based verification methodologies
to flourish [91]. That characteristic of blockchain networks, and also the fact that smart
contracts security exploits can result if devastating capital loss, often makes bytecode-level
program verification a business requirement for established blockchain projects [92].

7.3 Future work: Redfin modelling scope

The first body of future work we envision primary considers the modelling scope, i.e. what
are we modelling and verifying.

7.3.1 System bus interaction

The REDFIN core is intended to be deployed as the local control unit into space satellite
subsystems. The execution of REDFIN subroutines will be triggered by the system-wide
processing unit, with the external signals delivered to REDFIN via the system bus (see
Figure 7.1).As we have noted in section 5.3.1.1, we do not model the interaction with the
system bus.

System Bus (AMBA AHB)

Instruction Handler &
Arithmetic Logic Unit

Instruction Area

Memory
Controller &

Scrubber

Bus Slave I/F Bus Master I/F

REDFINv2 IP-Core

Data Area

Instruction & Data
Memory

Figure 7.1: REDFINv2 IP-Core block diagram. See section 5.3.1.1 for description.)

Including the specification of the system bus interactions into the model presents an

141

interesting opportunity to wrap the REDFIN code into a verified envelope, with the system
bus being the only unverified component. More specifically, such an extension of our work
could study the problem of rigorously defining the interactions of verified and unverified
systems.

7.3.2 Hardware synthesis

The models we build in this thesis consider REDFIN at the instruction-set architecture
level. An interesting extension of our work is to implement a hardware synthesis procedure
that would construct an implementation of the REDFIN core in a hardware description
language. This synthesised implementation can be then crossvalidated with the existing
bespoke implementation of REDFIN in VHDL for additional correctness guarantees.

7.4 Future work: formal verification techniques

The second avenue of future work considers the advances that can be made in how program
verification is performed.

7.4.1 Automated proof of functional correctness for looping programs

The most significant case-study of this thesis is verification of the stepper-motor control
program (section 5.3.6). The program calculates a series of displacement and velocities
for a stepper-motor to move an antenna or a solar panel into a specific position. The
termination condition of the program’s algorithm (Algorithm 1) depends on the symbolic
values associated with program variables that get altered at each iteration. This problem,
known as symbolic non-termination, is the subject of active research across the formal
software verification community. The traditional symbolic execution, which we use in our
implementation, while great for automated proving, does not cope well with symbolic non-
termination. There exists a number of techniques to mitigate this problem, which we have
described in the Background chapter 2.1.4.2. In section 5.3.6.3, we discuss how we use a
user-specified loop invariant to mitigate the non-termination problem up to some extent.
Using other techniques, much more could be done here, and we believe it is possible to

142

achieve automated verification of functional correctness of looping REDFIN programs.

7.4.2 Reducing the trusted base: verified symbolic execution

Every verification tool has a trusted base — a part of the implementation that is not verified
itself. Formal verification of a system involves checking that that system conforms to some
form of a specification. The specification is usually stated as a theorem in some formal logic,
and the verification tool checks that this theorem is valid. The implementation of this proof
checker usually has to be trusted to be implemented correctly. If there is a bug in the proof
checker, the verification tool may very well be unsound. i.e. it can construct a proof of ⊥,
the false proposition. If a proof of false can be constructed, anything can be proved.

The verification frameworks developed in this thesis have a large trusted base. We have
to trust not only our own REDFIN semantics and implementations of the symbolic execution
engine, but also a number of Haskell libraries [87] and the off-the-shelf SMT solver, Z3 [60].
Of course, this is also the case for many others verification tools, especially the push-button
ones, like ours.

While completely eliminating the trusted base is impossible, there is a noticeable trend
in modern literature on making the trusted base both (i) as small as possible and (ii)
correct-by-construction.

One approach to reduce the trusted base is to use a theorem prover as the metalanguage
for the implementation of a verification framework. Today, there exist a number of project
leveraging the Coq [56] theorem prover, thus shifting the trust onto its core, which is
itself designed to be small. Such project include the Verified Software Toolchain [93], which
targets verification of C programs; the Bedrock project [34] that considers low-level assembly-
like languages; and Katamaran [35], which aims to create a verified framework for ISA
specification and program verification.

In this thesis, we use the Haskell programming language as the metalanguage for ISA
semantics and as the implementation language of the symbolic execution engines. While
we do employ advanced features of Haskell’s type-system, such as type families and data
kinds to enforce a number of constrains on the type level, there exists some other, more
advanced machinery to enforce even stronger properties. The hs-to-coq [94] project sounds
like a very exciting tool to employ for this avenue. It performs a source-level translation

143

of the total subset of the Haskell programming language into the Coq [56] proof assistant,
so that the desired properties can be proved leveraging Coq’s powerful dependently-typed
metalanguage. A slightly different approach that avoids a translation to a different language
would be to use the dependently-typed flavour of Haskell [95] to prove the desired properties
inside Haskell itself.

Combining this direction, i.e. creating a verified verifier, with hardware synthesis 7.3.2
and system bus interaction 7.3.1 would yield a very interesting research project: a study of
formally verified processing core implementation, derived from a formal specification of the
core’s ISA.

144

Bibliography

[1] J. Lechner, “Building robust GALS circuits : fault-tolerant and variation-aware design. Tech-

niques for reliable circuit operation,” Ph.D. dissertation, TU Wien, 2014.

[2] N. G. Leveson, “Role of Software in Spacecraft Accidents,” Journal of Spacecraft and Rockets,

vol. 41, no. 4, pp. 564–575, 2004.

[3] M. Ben-Ari, “The Bug That Destroyed a Rocket,” SIGCSE Bull., vol. 33, no. 2, pp. 58–59,

Jun. 2001.

[4] NASA, “Mars Climate Orbiter Mishap Investigation Board Phase I Report,” NASA, Tech.

Rep., Nov. 1999.

[5] B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and K. Y. Rozier, “Embedding online runtime

verification for fault disambiguation on robonaut2,” in Formal Modeling and Analysis of

Timed Systems, N. Bertrand and N. Jansen, Eds., Cham: Springer International Publishing,

2020, pp. 196–214, isbn: 978-3-030-57628-8.

[6] N. Leveson, “A systems-theoretic approach to safety in software-intensive systems,” IEEE

Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp. 66–86, 2004. doi: 10.

1109/TDSC.2004.1.

[7] IEEE P1076 Working Group, Vhdl analysis and standardization group, [Online; accessed

15-August-2021], 2021. [Online]. Available: https://ieee-p1076.gitlab.io/.

[8] IEEE, “Ieee standard for systemverilog–unified hardware design, specification, and verifica-

tion language,” IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), pp. 1–1315, 2018.

doi: 10.1109/IEEESTD.2018.8299595.

145

https://doi.org/10.1109/TDSC.2004.1
https://doi.org/10.1109/TDSC.2004.1
https://ieee-p1076.gitlab.io/
https://doi.org/10.1109/IEEESTD.2018.8299595

[9] Bluespec Inc, Bluespec hardware description language, [Online; accessed 15-August-2021],

2021. [Online]. Available: https://github.com/B-Lang-org/bsc.

[10] A. Reid, R. Chen, A. Deligiannis, et al., “End-to-end verification of processors with isa-

formal,” in Computer Aided Verification, S. Chaudhuri and A. Farzan, Eds., Cham: Springer

International Publishing, 2016, pp. 42–58, isbn: 978-3-319-41540-6.

[11] A. Armstrong, T. Bauereiss, B. Campbell, et al., “Isa semantics for armv8-a, risc-v, and cheri-

mips,” Proc. ACM Program. Lang., vol. 3, no. POPL, 71:1–71:31, Jan. 2019, issn: 2475-1421.

doi: 10.1145/3290384. [Online]. Available: http://doi.acm.org/10.1145/3290384.

[12] M. J. S. Hunt Warren A. Kaufmann Matt and S. Anna, “Industrial hardware and software

verification with acl2,” Phil. Trans. R. Soc. A., 2017. doi: {https://doi.org/10.1098/

rsta.2015.0399}.

[13] RISC-V International, Risc-v website, [Online; accessed 15-August-2021], 2021. [Online]. Avail-

able: https://riscv.org/.

[14] ESA, ECSS-Q-ST-60-02C – ASIC and FPGA development, https://ecss.nl/standard/

ecss-q-st-60-02c-asic-and-fpga-development/, 2008.

[15] ESA, ECSS-Q-ST-80C Rev.1 – Software product assurance, https://ecss.nl/standard/

ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/, 2017.

[16] A. Mokhov, G. Lukyanov, S. Marlow, and J. Dimino, “Selective applicative functors,” Proc.

ACM Program. Lang., vol. 3, no. ICFP, Jul. 2019. doi: 10.1145/3341694. [Online]. Available:

https://doi.org/10.1145/3341694.

[17] Ethereum Foundation, Ethereum virtual machine (evm), [Online; accessed 28-April-2021],

2021. [Online]. Available: https://ethereum.org/en/developers/docs/evm/.

[18] Algorand Foundation, Teal, [Online; accessed 28-April-2021], 2021. [Online]. Available: https:

//developer.algorand.org/docs/get-details/dapps/avm/teal/specification/.

[19] W3C; Mozilla; Microsoft; Google; Apple, Webassembly, [Online; accessed 28-April-2021], 2021.

[Online]. Available: https://webassembly.org/.

146

https://github.com/B-Lang-org/bsc
https://doi.org/10.1145/3290384
http://doi.acm.org/10.1145/3290384
https://doi.org/{https://doi.org/10.1098/rsta.2015.0399}
https://doi.org/{https://doi.org/10.1098/rsta.2015.0399}
https://riscv.org/
https://ecss.nl/standard/ecss-q-st-60-02c-asic-and-fpga-development/
https://ecss.nl/standard/ecss-q-st-60-02c-asic-and-fpga-development/
https://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
https://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
https://doi.org/10.1145/3341694
https://doi.org/10.1145/3341694
https://ethereum.org/en/developers/docs/evm/
https://developer.algorand.org/docs/get-details/dapps/avm/teal/specification/
https://developer.algorand.org/docs/get-details/dapps/avm/teal/specification/
https://webassembly.org/

[20] J. Contributors, Junit 5 user guide, [Online; accessed 13-September-2021], 2021. [Online].

Available: https://junit.org/junit5/docs/current/user-guide/.

[21] Q. Contributors, Quickcheck: Automatic testing of haskell programs, [Online; accessed 13-

September-2021], 2021. [Online]. Available: https://hackage.haskell.org/package/

QuickCheck.

[22] smallcheck Contributors, Smallcheck: A property-based testing library, [Online; accessed 13-

September-2021], 2021. [Online]. Available: https://hackage.haskell.org/package/

smallcheck.

[23] hedgehog Contributors, Hedgehog: Release with confidence, [Online; accessed 13-September-

2021], 2021. [Online]. Available: https://hackage.haskell.org/package/hedgehog.

[24] P. Mishra and N. Dutt, Processor Description Languages. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2008, isbn: 9780080558370.

[25] ARM Ltd., A-profile architectures / exploration tools, [Online; accessed 26-September-2021].

[Online]. Available: https://developer.arm.com/architectures/cpu-architecture/a-

profile/exploration-tools.

[26] A. Reid, “Defining interfaces between hardware and software: Quality and performance,”

Ph.D. dissertation, School of Computing Science, University of Glasgow, Glasgow, Scotland,

Mar. 2019. [Online]. Available: http://theses.gla.ac.uk/41068/.

[27] Anthony Fox, L3 language manual, [Online; accessed 2-October-2021], 2021. [Online]. Avail-

able: ttps://acjf3.github.io/l3/l3.pdf.

[28] A. Fox, “Directions in isa specification,” in Interactive Theorem Proving, L. Beringer and

A. Felty, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 338–344, isbn: 978-

3-642-32347-8.

[29] A. Fox, “Improved tool support for machine-code decompilation in hol4,” in Interactive The-

orem Proving, C. Urban and X. Zhang, Eds., Cham: Springer International Publishing, 2015,

pp. 187–202, isbn: 978-3-319-22102-1.

147

https://junit.org/junit5/docs/current/user-guide/
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/smallcheck
https://hackage.haskell.org/package/smallcheck
https://hackage.haskell.org/package/hedgehog
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
http://theses.gla.ac.uk/41068/
ttps://acjf3.github.io/l3/l3.pdf

[30] D. Cock, “Lyrebird - assigning meanings to machines,” in 5th International Workshop on

Systems Software Verification, SSV’10, Vancouver, BC, Canada, October 6-7, 2010, R. Hu-

uck, G. Klein, and B. Schlich, Eds., USENIX Association, 2010. [Online]. Available: https:

//www.usenix.org/conference/ssv10/lyrebird%5C%E2%5C%80%5C%94assigning-

meanings-machines.

[31] G. Klein, J. Andronick, K. Elphinstone, et al., “Comprehensive formal verification of an os

microkernel,” ACM Trans. Comput. Syst., vol. 32, no. 1, Feb. 2014, issn: 0734-2071. doi:

10.1145/2560537. [Online]. Available: https://doi.org/10.1145/2560537.

[32] M. R. Barbacci, “Instruction set processor specifications (isps): The notation and its appli-

cations,” IEEE Transactions on Computers, no. 1, pp. 24–40, 1981. doi: 10.1109/TC.1981.

6312154.

[33] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind, “Kami: A platform for

high-level parametric hardware specification and its modular verification,” Proc. ACM Pro-

gram. Lang., vol. 1, no. ICFP, Aug. 2017. doi: 10.1145/3110268. [Online]. Available: https:

//doi.org/10.1145/3110268.

[34] A. Chlipala, “Mostly-automated verification of low-level programs in computational separa-

tion logic,” in Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language

Design and Implementation, ser. PLDI ’11, San Jose, California, USA: Association for Com-

puting Machinery, 2011, pp. 234–245, isbn: 9781450306638. doi: 10.1145/1993498.1993526.

[Online]. Available: https://doi.org/10.1145/1993498.1993526.

[35] S. Keuchel, G. Lukyanov, and D. Devriese, Katamaran: Semi-automated verification of

isa specifications, https://pldi20.sigplan.org/details/rems- deepspec- 2020/7/

Katamaran-semi-automated-verification-of-ISA-specifications, 2020.

[36] J. Woodruff, R. N. Watson, D. Chisnall, et al., “The cheri capability model: Revisiting risc

in an age of risk,” in Proceeding of the 41st Annual International Symposium on Computer

Architecuture, ser. ISCA ’14, Minneapolis, Minnesota, USA: IEEE Press, 2014, pp. 457–468,

isbn: 9781479943944.

148

https://www.usenix.org/conference/ssv10/lyrebird%5C%E2%5C%80%5C%94assigning-meanings-machines
https://www.usenix.org/conference/ssv10/lyrebird%5C%E2%5C%80%5C%94assigning-meanings-machines
https://www.usenix.org/conference/ssv10/lyrebird%5C%E2%5C%80%5C%94assigning-meanings-machines
https://doi.org/10.1145/2560537
https://doi.org/10.1145/2560537
https://doi.org/10.1109/TC.1981.6312154
https://doi.org/10.1109/TC.1981.6312154
https://doi.org/10.1145/3110268
https://doi.org/10.1145/3110268
https://doi.org/10.1145/3110268
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1145/1993498.1993526
https://pldi20.sigplan.org/details/rems-deepspec-2020/7/Katamaran-semi-automated-verification-of-ISA-specifications
https://pldi20.sigplan.org/details/rems-deepspec-2020/7/Katamaran-semi-automated-verification-of-ISA-specifications

[37] A. Fox and M. O. Myreen, “A trustworthy monadic formalization of the armv7 instruction

set architecture,” in Interactive Theorem Proving, M. Kaufmann and L. C. Paulson, Eds.,

Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 243–258, isbn: 978-3-642-14052-5.

[38] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni, “Modular verification of assembly

code with stack-based control abstractions,” in Proceedings of the 27th ACM SIGPLAN

Conference on Programming Language Design and Implementation, ser. PLDI ’06, Ottawa,

Ontario, Canada: Association for Computing Machinery, 2006, pp. 401–414, isbn: 1595933204.

doi: 10.1145/1133981.1134028. [Online]. Available: https://doi.org/10.1145/1133981.

1134028.

[39] Z. Ni and Z. Shao, “Certified assembly programming with embedded code pointers,” in POPL

’06, ser. POPL ’06, Charleston, South Carolina, USA: Association for Computing Machinery,

2006, pp. 320–333, isbn: 1595930272. doi: 10.1145/1111037.1111066. [Online]. Available:

https://doi.org/10.1145/1111037.1111066.

[40] G. C. Necula, “Proof-carrying code,” in Proceedings of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, ser. POPL ’97, Paris, France: Associa-

tion for Computing Machinery, 1997, pp. 106–119, isbn: 0897918533. doi: 10.1145/263699.

263712. [Online]. Available: https://doi.org/10.1145/263699.263712.

[41] T. Bourgeat, I. Clester, A. Erbsen, S. Gruetter, A. Wright, and A. Chlipala, A multipurpose

formal risc-v specification, 2021. arXiv: 2104.00762 [cs.LO].

[42] B. Bond, C. Hawblitzel, M. Kapritsos, et al., “Vale: Verifying high-performance cryptographic

assembly code,” in 26th USENIX Security Symposium (USENIX Security 17), Vancouver,

BC: USENIX Association, Aug. 2017, pp. 917–934, isbn: 978-1-931971-40-9. [Online]. Avail-

able: https://www.usenix.org/conference/usenixsecurity17/technical-sessions/

presentation/bond.

[43] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary analysis platform,”

in Computer Aided Verification, G. Gopalakrishnan and S. Qadeer, Eds., Berlin, Heidelberg:

Springer Berlin Heidelberg, 2011, pp. 463–469, isbn: 978-3-642-22110-1.

149

https://doi.org/10.1145/1133981.1134028
https://doi.org/10.1145/1133981.1134028
https://doi.org/10.1145/1133981.1134028
https://doi.org/10.1145/1111037.1111066
https://doi.org/10.1145/1111037.1111066
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/263699.263712
https://arxiv.org/abs/2104.00762
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond

[44] U. Degenbaev, Formal specification of the x86 instruction set architecture, Formelle spezi-

fizierung von dem x86-befehlssatz, 2012. doi: http://dx.doi.org/10.22028/D291-26338.

[45] S. Goel, W. A. Hunt, and M. Kaufmann, “Abstract stobjs and their application to isa model-

ing,” Electronic Proceedings in Theoretical Computer Science, vol. 114, pp. 54–69, Apr. 2013,

issn: 2075-2180. doi: 10.4204/eptcs.114.5. [Online]. Available: http://dx.doi.org/10.

4204/EPTCS.114.5.

[46] A. Contributors, ACL2 Homepage, https://www.cs.utexas.edu/users/moore/acl2/,

Blog, 2021.

[47] S. Goel, A. Slobodova, R. Sumners, and S. Swords, “Balancing automation and control for

formal verification of microprocessors,” in Computer Aided Verification, A. Silva and K. R. M.

Leino, Eds., Cham: Springer International Publishing, 2021, pp. 26–45, isbn: 978-3-030-81685-

8.

[48] S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and G. Roşu, “A complete formal semantics

of x86-64 user-level instruction set architecture,” in Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation, ser. PLDI 2019, Phoenix,

AZ, USA: Association for Computing Machinery, 2019, pp. 1133–1148, isbn: 9781450367127.

doi: 10.1145/3314221.3314601. [Online]. Available: https://doi.org/10.1145/3314221.

3314601.

[49] Two’s complement, Two’s complement — Wikipedia, the free encyclopedia, [Online; accessed

26-April-2021], 2021. [Online]. Available: https://en.wikipedia.org/wiki/Two%27s_

complement.

[50] R. C. Seacord, Secure Coding in C and C++, 2nd. Addison-Wesley Professional, 2013, isbn:

0321822137.

[51] CERT C Coding Standad, Cert c coding standad, [Online; accessed 28-April-2021], 2021.

[Online]. Available: https://wiki.sei.cmu.edu/confluence/display/c/INT32- C.

+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow.

150

https://doi.org/http://dx.doi.org/10.22028/D291-26338
https://doi.org/10.4204/eptcs.114.5
http://dx.doi.org/10.4204/EPTCS.114.5
http://dx.doi.org/10.4204/EPTCS.114.5
https://www.cs.utexas.edu/users/moore/acl2/
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/3314221.3314601
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement
https://wiki.sei.cmu.edu/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://wiki.sei.cmu.edu/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow

[52] T. Kapus, M. Nowack, and C. Cadar, “Constraints in dynamic symbolic execution: Bitvectors

or integers?” In Tests and Proofs, D. Beyer and C. Keller, Eds., Cham: Springer International

Publishing, 2019, pp. 41–54, isbn: 978-3-030-31157-5.

[53] C. Cadar and K. Sen, “Symbolic execution for software testing: Three decades later,” Com-

mun. ACM, vol. 56, no. 2, pp. 82–90, Feb. 2013, issn: 0001-0782. doi: 10.1145/2408776.

2408795. [Online]. Available: https://doi.org/10.1145/2408776.2408795.

[54] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A survey of symbolic

execution techniques,” ACM Comput. Surv., vol. 51, no. 3, 2018.

[55] G. D. Plotkin, “The origins of structural operational semantics,” The Journal of Logic and

Algebraic Programming, pp. 3–15, 2004, Structural Operational Semantics, issn: 1567-8326.

doi: https://doi.org/10.1016/j.jlap.2004.03.009. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S1567832604000268.

[56] Coq Development Team, The coq proof assistant, [Online; accessed 28-April-2021], 2021.

[Online]. Available: https://coq.inria.fr/.

[57] Agda Development Team, The agda progarmming language, [Online; accessed 28-April-2021],

2021. [Online]. Available: https://wiki.portal.chalmers.se/agda/pmwiki.php.

[58] E. Moggi, “Notions of computation and monads,” Inf. Comput., vol. 93, no. 1, pp. 55–92,

Jul. 1991, issn: 0890-5401. doi: 10.1016/0890- 5401(91)90052- 4. [Online]. Available:

https://doi.org/10.1016/0890-5401(91)90052-4.

[59] P. Wadler, “Monads for functional programming,” in Program Design Calculi, M. Broy, Ed.,

Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 233–264, isbn: 978-3-662-02880-3.

[60] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” Tools and Algorithms for the

Construction and Analysis of Systems, pp. 337–340, 2008.

[61] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version 2.0,” Department of

Computer Science, The University of Iowa, Tech. Rep., 2010, Available at www.SMT-LIB.org.

151

https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/https://doi.org/10.1016/j.jlap.2004.03.009
https://www.sciencedirect.com/science/article/pii/S1567832604000268
https://www.sciencedirect.com/science/article/pii/S1567832604000268
https://coq.inria.fr/
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4

[62] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic generation of high-

coverage tests for complex systems programs,” in 8th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI 08), San Diego, CA: USENIX Association, Dec. 2008.

[Online]. Available: https://www.usenix.org/conference/osdi-08/klee-unassisted-

and-automatic-generation-high-coverage-tests-complex-systems.

[63] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “Exe: Automatically

generating inputs of death,” ACM Trans. Inf. Syst. Secur., vol. 12, no. 2, Dec. 2008, issn:

1094-9224. doi: 10.1145/1455518.1455522. [Online]. Available: https://doi.org/10.

1145/1455518.1455522.

[64] C. S. Păsăreanu and N. Rungta, “Symbolic pathfinder: Symbolic execution of java byte-

code,” in Proceedings of the IEEE/ACM International Conference on Automated Software

Engineering, ser. ASE ’10, Antwerp, Belgium: Association for Computing Machinery, 2010,

pp. 179–180, isbn: 9781450301169. doi: 10.1145/1858996.1859035. [Online]. Available:

https://doi.org/10.1145/1858996.1859035.

[65] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state merging in symbolic

execution,” SIGPLAN Not., vol. 47, no. 6, pp. 193–204, Jun. 2012, issn: 0362-1340. doi:

10.1145/2345156.2254088. [Online]. Available: https://doi.org/10.1145/2345156.

2254088.

[66] P. Godefroid and D. Luchaup, “Automatic partial loop summarization in dynamic test gen-

eration,” in Proceedings of the 2011 International Symposium on Software Testing and Anal-

ysis, ser. ISSTA ’11, Toronto, Ontario, Canada: Association for Computing Machinery, 2011,

pp. 23–33, isbn: 9781450305624. doi: 10.1145/2001420.2001424. [Online]. Available: https:

//doi.org/10.1145/2001420.2001424.

[67] T. Liu, M. Araujo, M. d’Amorim, and M. Taghdiri, “A comparative study of incremental

constraint solving approaches in symbolic execution,” in 10th Haifa Verification Conference

(HVC), 2014, Nov. 2014.

[68] A. Church, “A formulation of the simple theory of types,” Journal of Symbolic Logic, vol. 5,

no. 2, pp. 56–68, 1940. doi: 10.2307/2266170.

152

https://www.usenix.org/conference/osdi-08/klee-unassisted-and-automatic-generation-high-coverage-tests-complex-systems
https://www.usenix.org/conference/osdi-08/klee-unassisted-and-automatic-generation-high-coverage-tests-complex-systems
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1145/2345156.2254088
https://doi.org/10.1145/2345156.2254088
https://doi.org/10.1145/2345156.2254088
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.2307/2266170

[69] P. Hudak, S. Peyton Jones, P. Wadler, et al., “Report on the programming language haskell:

A non-strict, purely functional language version 1.2,” SIGPLAN Not., vol. 27, no. 5, pp. 1–

164, 1992.

[70] R. M. Burstall, D. B. MacQueen, and D. T. Sannella, “Hope: An experimental applicative

language,” in Proceedings of the 1980 ACM Conference on LISP and Functional Programming,

ser. LFP ’80, Stanford University, California, USA: Association for Computing Machinery,

1980, pp. 136–143, isbn: 9781450373968. doi: 10.1145/800087.802799. [Online]. Available:

https://doi.org/10.1145/800087.802799.

[71] G. Hutton, “A tutorial on the universality and expressiveness of fold,” Journal of Functional

Programming, vol. 9, Sep. 1999. doi: 10.1017/S0956796899003500.

[72] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler, “A history of haskell: Being lazy with

class,” in Proceedings of the Third ACM SIGPLAN Conference on History of Programming

Languages, ser. HOPL III, San Diego, California: Association for Computing Machinery, 2007,

pp. 12–1–12–55, isbn: 9781595937667. doi: 10.1145/1238844.1238856. [Online]. Available:

https://doi.org/10.1145/1238844.1238856.

[73] G. Contributors, Ghc users guide, [Online; accessed 12-May-2021], 2021. [Online]. Available:

https://ghc.readthedocs.io/.

[74] B. Blöndal, A. Löh, and R. Scott, “Deriving via: Or, how to turn hand-written instances

into an anti-pattern,” SIGPLAN Not., vol. 53, no. 7, pp. 55–67, Sep. 2018, issn: 0362-1340.

doi: 10.1145/3299711.3242746. [Online]. Available: https://doi.org/10.1145/3299711.

3242746.

[75] T. Sheard and S. P. Jones, “Template meta-programming for haskell,” in Proceedings of

the 2002 ACM SIGPLAN Workshop on Haskell, ser. Haskell ’02, Pittsburgh, Pennsylvania:

Association for Computing Machinery, 2002, pp. 1–16, isbn: 1581136056. doi: 10.1145/

581690.581691. [Online]. Available: https://doi.org/10.1145/581690.581691.

[76] J. Svenningsson and E. Axelsson, “Combining deep and shallow embedding for edsl,” in

Trends in Functional Programming, H.-W. Loidl and R. Peña, Eds., Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, pp. 21–36, isbn: 978-3-642-40447-4.

153

https://doi.org/10.1145/800087.802799
https://doi.org/10.1145/800087.802799
https://doi.org/10.1017/S0956796899003500
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/1238844.1238856
https://ghc.readthedocs.io/
https://doi.org/10.1145/3299711.3242746
https://doi.org/10.1145/3299711.3242746
https://doi.org/10.1145/3299711.3242746
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691

[77] C. Mcbride and R. Paterson, “Applicative programming with effects,” J. Funct. Program.,

vol. 18, no. 1, pp. 1–13, Jan. 2008, issn: 0956-7968. doi: 10.1017/S0956796807006326.

[Online]. Available: https://doi.org/10.1017/S0956796807006326.

[78] P. Wadler, “Theorems for free!” In FPCA, vol. 89, 1989, pp. 347–359.

[79] D. Leijen and E. Meijer, “Domain specific embedded compilers,” ACM Sigplan Notices,

vol. 35, no. 1, pp. 109–122, 2000.

[80] R. Harper, “Boolean Blindness,” https://web.archive.org/web/20110321191234/http:

//existentialtype.wordpress.com/2011/03/15/boolean-blindness/, 2011.

[81] B. Blöndal, A. Löh, and R. Scott, “Deriving via,” in Proceedings of the 11th ACM Haskell

Symposium (Haskell’18), 2018.

[82] P. Wadler, “Monads for functional programming,” in Int’l School on Advanced Functional

Programming, Springer, 1995, pp. 24–52.

[83] P. Sewell, F. Z. Nardelli, S. Owens, et al., “Ott: Effective tool support for the working

semanticist,” SIGPLAN Not., vol. 42, no. 9, pp. 1–12, Oct. 2007, issn: 0362-1340. doi: 10.

1145/1291220.1291155. [Online]. Available: https://doi.org/10.1145/1291220.1291155.

[84] D. P. Mulligan, S. Owens, K. E. Gray, T. Ridge, and P. Sewell, “Lem: Reusable engineering of

real-world semantics,” in Proceedings of the 19th ACM SIGPLAN International Conference

on Functional Programming, ser. ICFP ’14, Gothenburg, Sweden: Association for Comput-

ing Machinery, 2014, pp. 175–188, isbn: 9781450328739. doi: 10.1145/2628136.2628143.

[Online]. Available: https://doi.org/10.1145/2628136.2628143.

[85] G. Roșu and T. F. Șerbănută, “An overview of the k semantic framework,” The Journal of

Logic and Algebraic Programming, vol. 79, no. 6, pp. 397–434, 2010, Membrane computing

and programming, issn: 1567-8326. doi: https : / / doi . org / 10 . 1016 / j . jlap . 2010 .

03.012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S1567832610000160.

[86] P. Wadler, “Comprehending monads,” in Proceedings of the 1990 ACM conference on LISP

and functional programming, ACM, 1990, pp. 61–78.

154

https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1017/S0956796807006326
https://web.archive.org/web/20110321191234/http://existentialtype.wordpress.com/2011/03/15/boolean-blindness/
https://web.archive.org/web/20110321191234/http://existentialtype.wordpress.com/2011/03/15/boolean-blindness/
https://doi.org/10.1145/1291220.1291155
https://doi.org/10.1145/1291220.1291155
https://doi.org/10.1145/1291220.1291155
https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1145/2628136.2628143
https://doi.org/https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/https://doi.org/10.1016/j.jlap.2010.03.012
https://www.sciencedirect.com/science/article/pii/S1567832610000160
https://www.sciencedirect.com/science/article/pii/S1567832610000160

[87] L. Erkok, SBV: SMT Based Verification in Haskell, 2019. [Online]. Available: http : / /

leventerkok.github.io/sbv/ (visited on 11/27/2017).

[88] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones, “Refinement types for

Haskell,” in ACM SIGPLAN Notices, ACM, 2014, pp. 269–282.

[89] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization skeletons using

branching time temporal logic,” in Logics of Programs, D. Kozen, Ed., Berlin, Heidelberg:

Springer Berlin Heidelberg, 1982, pp. 52–71, isbn: 978-3-540-39047-3.

[90] Oracle, The java® virtual machine specification, [Online; accessed 28-April-2021], 2021. [On-

line]. Available: https://docs.oracle.com/javase/specs/jvms/se7/html/.

[91] M. Alturki, J. Chen, V. Luchangco, et al., “Towards a verified model of the algorand consensus

protocol in coq,” English (US), in Formal Methods- FM 2019 International Workshops -

Revised Selected Papers, ser. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Publisher Copyright: ©

Springer Nature Switzerland AG 2020.; 3rd World Congress on Formal Methods, FM 2019

; Conference date: 07-10-2019 Through 11-10-2019, Germany: Springer, 2020, pp. 362–367,

isbn: 9783030549930. doi: 10.1007/978-3-030-54994-7_27.

[92] Maker DAO, Maker dao, [Online; accessed 28-April-2021], 2021. [Online]. Available: https:

//security.makerdao.com/formal-verification.

[93] A. W. Appel, “Verified software toolchain,” in Proceedings of the 20th European Conference

on Programming Languages and Systems: Part of the Joint European Conferences on Theory

and Practice of Software, ser. ESOP’11/ETAPS’11, Saarbrücken, Germany: Springer-Verlag,

2011, pp. 1–17, isbn: 9783642197178.

[94] A. Spector-Zabusky, J. Breitner, C. Rizkallah, and S. Weirich, “Total haskell is reasonable

coq,” in Proceedings of the 7th ACM SIGPLAN International Conference on Certified Pro-

grams and Proofs, ser. CPP 2018, Los Angeles, CA, USA: Association for Computing Ma-

chinery, 2018, pp. 14–27, isbn: 9781450355865. doi: 10.1145/3167092. [Online]. Available:

https://doi.org/10.1145/3167092.

155

http://leventerkok.github.io/sbv/
http://leventerkok.github.io/sbv/
https://docs.oracle.com/javase/specs/jvms/se7/html/
https://doi.org/10.1007/978-3-030-54994-7_27
https://security.makerdao.com/formal-verification
https://security.makerdao.com/formal-verification
https://doi.org/10.1145/3167092
https://doi.org/10.1145/3167092

[95] S. Weirich, A. Voizard, P. H. A. de Amorim, and R. A. Eisenberg, “A specification for

dependent types in haskell,” Proc. ACM Program. Lang., vol. 1, no. ICFP, Aug. 2017. doi:

10.1145/3110275. [Online]. Available: https://doi.org/10.1145/3110275.

156

https://doi.org/10.1145/3110275
https://doi.org/10.1145/3110275

	List of Figures
	List of Tables
	Glossary
	Introduction
	Microprocessor formal specification and verification
	Formal methods in space industry
	Motivating case-study: the REDFIN instruction-set architecture
	REDFIN Instruction Set and Microarchitecture
	Intended use-cases for REDFIN
	Requirements for Formal Verification

	Methodology and contributions
	A generic semantics-based verification framework
	Methodology of redfin program verification
	Contributions
	Further applicability
	Publications

	Structure of the thesis

	Background
	Software verification
	Formal verification of ISA programs: a related work overview
	ISA specification languages and frameworks
	Standalone DSLs for ISA specification
	ISA specification EDSLs

	Specific ISA models
	Conclusion

	Caveats of ISA-level formal specification
	Numbers are not what they seem
	Postcondition test
	Precondition test
	Using a larger signed integer type

	Symbolic execution
	An interlude on programming language semantics

	Symbolic execution of machine code
	Symbolic representation of REDFIN ISA data
	Symbolic execution strategies
	Pruning unreachable branches on-the-fly
	State merging
	Loop summaries
	Incremental solving

	Functional Programming
	Pure functions, totality and side effects
	Higher-order functions and recursion
	map — structure-preserving transformations of lists
	foldr — computing summaries of lists

	Algebraic data types
	Why ``algebraic''
	Sum types
	Product types
	Recursive types
	newtype — introducing a type isomorphic to an existing one

	Type classes
	The Eq class — equality
	The Ord class — total order
	Defining custom type classes

	Programs with side-effects
	Revisiting IO
	The Functor Class — independent effects
	The Applicative class — statically defined effects
	Selective class — statically defined, dynamically dispatched effects
	Selective combinators
	Examples of selective functors

	The Monad class — fully dynamic effects

	Instruction-set architecture semantics
	Instruction syntax
	Concrete syntax: instruction codes
	Abstract syntax

	ISA state
	Data types

	Instruction semantics
	Coarse-grained operation semantics
	Fine-grained dataflow-aware semantics
	Linear dataflow
	Static Tree Dataflow
	Selective Tree Dataflow
	Dynamic Tree Dataflow

	Conclusion

	REDFIN semantics and program verification with coarse-grained monadic state transformers
	The REDFIN ISA state
	Instruction and Program Semantics
	Halting the Processor
	Arithmetics
	Conditional Branching

	Simulation and formal verification
	Energy estimation control task
	Program simulation
	Formal verification
	Checking program equivalence
	Worst-Case Execution Time analysis

	Array sum
	Integer overflow
	Program equivalence

	Discussion

	REDFIN semantics and program verification with fine-grained state transformers
	Fine-grained state transformers
	The FS type

	REDFIN ISA semantics as a fine-grained state transformer
	Data types
	Value type classes
	Symbolic values
	Memory representation
	Instruction and program semantics

	Symbolic execution
	Memory representation
	Memory configuration of REDFIN
	Concrete and symbolic memory addresses

	Symbolic execution context
	Example: initial state of an array summation program

	Execution traces
	Specification syntax
	Invariant syntax

	Invariant semantics
	Interpreting invariants over symbolic execution traces
	Interfacing with an off-the-shelf SMT solver

	Case-study: stepper-motor control program
	Motor Control Algorithm
	Program termination and arithmetic safety
	Loop Invariant Verification

	Tool support
	Redfin Assembly
	Compiler for a language of expressions
	Abstract Syntax of Expressions
	Reusing Haskell's syntax as concrete syntax
	Compiling Expressions to Assembly
	Stack emulation

	Integrated Development Environment
	Motivation
	IDE features
	Demonstration: array sum program
	IDE Implementation Overview

	Conclusions and future work
	Summary of contributions
	Contributions

	Future work: application to other architectures
	Future work: Redfin modelling scope
	System bus interaction
	Hardware synthesis

	Future work: formal verification techniques
	Automated proof of functional correctness for looping programs
	Reducing the trusted base: verified symbolic execution

	Bibliography

